

Technical Report NEESgrid-2003-21
www.neesgrid.org

(Draft Whitepaper Version: 1.0
Last modified: October 4, 2003)

NMDS Reference User Guide

(DRAFT)

Joe Futrelle1

1 National Center for Supercomputing Applications, Champaign, IL 61821

Feedback on this document should be directed to futrelle@ncsa.uiuc.edu

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

mailto:futrelle@ncsa.uiuc.edu

NMDS User Guide Page 2

1 Summary ... 4

1.1 About this document ... 4
2 NEESgrid Repository Object Model .. 4

2.1 Overview... 4
2.2 Important concepts.. 5

2.2.1 Objects .. 5
2.2.2 Relations ... 5
2.2.3 Types... 5
2.2.4 References... 5
2.2.5 Versioning... 6
2.2.6 Containers ... 6

3 Overview of the NMDS API... 6
3.1 Object interfaces ... 6
3.2 Service interfaces .. 7
3.3 Utility classes .. 7

4 Interacting with the repository .. 7
4.1 Stages of interaction.. 7

4.1.1 Acquiring a service instance ... 8
4.1.2 Acquiring a reference.. 8
4.1.3 Retrieving an object .. 8
4.1.4 Modifying an object.. 8

5 Code examples .. 8
5.1 Basic interactions .. 9

5.1.1 Creating and registering a factory... 9
5.1.2 Acquiring a service instance ... 9
5.1.3 Creating a reference .. 9

5.2 Retrieving objects and relations.. 10
5.2.1 Retrieving objects ... 10
5.2.2 Retrieving different versions of an object... 10
5.2.3 Retrieving the root container .. 11
5.2.4 Getting relation values .. 11
5.2.5 Getting all relations... 11
5.2.6 Getting selected relation values .. 12
5.2.7 Following a link .. 13
5.2.8 Titles and creation/update times ... 13

5.3 Modifying the repository .. 13
5.3.1 Creating objects .. 14
5.3.2 Deleting objects .. 14
5.3.3 Updating objects ... 14
5.3.4 Handling concurrency issues .. 15
5.3.5 About versioning and links ... 16
5.3.6 Copying objects .. 16

5.4 Containers ... 17
5.4.1 Creating a container .. 17
5.4.2 Getting the contents of a container ... 17

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 3

5.4.3 Determining if an object is a container and traversing a container
hierarchy 17
5.4.4 Determining what containers an object is in... 18
5.4.5 Adding an object to a container .. 18
5.4.6 Removing an object from a container... 19
5.4.7 Concurrency.. 19
5.4.8 Updating container hierarchies ... 19

5.5 Types... 20
5.5.1 Getting the type of an object... 20
5.5.2 Determining type membership of an object.. 20
5.5.3 Relation constraints... 21
5.5.4 Allowed types for links... 22

5.6 Search.. 23
5.6.1 Searching for objects with a relation value... 23
5.6.2 Searching in a container.. 23
5.6.3 Searching for objects updated since a certain time................................... 23

5.7 Namespaces... 24
6 Appendix A: example application .. 25

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 4

1 Summary
The NEESgrid metadata service (NMDS) API provides a means for creating, managing,
retrieving, and modifying metadata objects in a NEESgrid repository. This document
describes the NEESgrid repository object model, gives an overview of the NMDS API,
and demonstrates each major capability of the NMDS API with code examples. This
document describes the NMDS API as of NEESgrid release 2.0.

1.1 About this document
This document assumes some familiarity with the NEESgrid repository project. Readers
of this document should review earlier documents, including:

• NEESgrid Technical Report 2003-15: NEESML Reference User Guide
• NEESgrid Technical Report 2003-12: Overview of NEESML Whitepaper v1.0
• “Designing Metadata for the NEESgrid Data Repository”

http://www.ncsa.uiuc.edu/People/futrelle/ppt/training_metadata.ppt (April 2003)
• NEESgrid Technical Report 2002-05: The NEESgrid Metadata Service API:

Overview
• NEESgrid Technical Report 2002-04: NEESgrid Data and Metadata Harvesting

Protocol Whitepaper v1.0.2

Since the NEESgrid repository implementation is still under development, some older
documents may be out of date. Newer documents take precedence. This document
describes the NMDS API as of NEESgrid release 2.0, and can be referred to when
developing applications against that release.

In addition, it can be useful to review other relevant technologies. A high-level
understanding of XML, XML Schema, and RDF will help contextualize the framework
being described here.

This document describes the NEESgrid repository object model, gives an overview of the
NMDS API, and demonstrates each major capability of the NMDS API with code
examples.

Many of the code examples are abstract, rather than taken from applications in any
specific domain. This is done in the interest of brevity.

2 NEESgrid Repository Object Model

2.1 Overview
NEESgrid metadata objects are based on a simple, RDF-like model. In the model, each
object can be associated with primitive values and to other objects by means of named
relations. In addition, object types can be defined which constrain the kinds of relations
that are permitted for each object of that type. Using relations, web-like topologies of

Futrelle www.neesgrid.org 10/7/2003

http://www.ncsa.uiuc.edu/People/futrelle/ppt/training_metadata.ppt

NMDS User Guide Page 5

linked objects can be created that can be used to describe real-world or application-
specific relationships.

Objects are immutable. This means that the relations of an object cannot be modified.
Instead, new versions of objects can be created. This simplifies concurrency control but
complicates the API considerably. It is important to make sure that you pay attention to
issues of versioning and concurrency when you write clients, which may interact with
other clients accessing the same objects simultaneously.

NMDS also provides a set of convenience API’s for adding and removing objects from
containers. Containers are special objects that can contain other objects, much the same
way a folder contains files in Windows. Like folders, containers can contain other
containers. Unlike folders and files in Windows, objects can be in more than one
container simultaneously.

2.2 Important concepts

2.2.1 Objects
The “unit of currency” in the NEESgrid repository is the object. Objects, also called
instances, encapsulate sets of related data items. Objects can be used either to represent
real-world objects, such as a beam or a sensor, or abstractions, such as an experimental
design or a schedule. They accomplish this representation using relations. An object is
analogous to, but not equivalent to, a row in a spreadsheet or relational database table or a
resource in RDF.

2.2.2 Relations
Relations are named data items associated with an object. An object is little more than a
collection of relations. Each relation has a name and an associated data item, called its
value, which is either a primitive data item such as an integer or a date, or a link to
another object. A relation is analogous to, but not equivalent, to a cell in a spreadsheet or
column value in a relational database table. A relation may have any number of values for
a single object.

2.2.3 Types
A type constrains the relations that an object can contain, both in terms of type and
cardinality. Objects can be generated which conform to types, and objects can be
compared to types to check their validity. Types are analogous to, but not equivalent to,
a table definition in a relational database or a class in Java or C++.

2.2.4 References
References allow objects to be unambiguously identified. A reference identifies an object
using a unique identifier and a version number. Relations can have references as values,
forming a link between objects. A reference is analogous to, but not equivalent to, a
foreign key in a relational database table or an IDREF in an XML document.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 6

2.2.5 Versioning
When an object is initially created, its version number is 0. Every time the object is
updated, a new object with a higher version number is created. Clients can use version
numbers to reconstruct the web of objects that existed in the repository at any point. They
can also use version numbers to make decisions about how to handle contention with
other clients over updating the same objects. A client can always get a reference to the
latest version of any object.

2.2.6 Containers
Containers are objects that can contain other objects. NMDS provides a number of useful
methods for working with containers, including traversing container hierarchies, listing
the contents of containers, adding and removing objects from containers, and searching in
containers. A container is analogous to, but not identical to, a folder in Windows or a Set
in Java.

3 Overview of the NMDS API
The NMDS API acts as a communication layer between an application and the NEESgrid
repository. Because NMDS is based on web services, the application need not be co-
located with the repository. API calls that require exchanging information with the
repository are automatically translated into web services requests by the API, which
manages the connection to the repository.

The NMDS API consists of two sets of interfaces and some utility classes. The first set of
interfaces represents objects, relations, and object references. The second set of interfaces
represents the metadata service. And finally, utility classes provide simplified API’s for
constructing and managing types, testing the service, ingesting XML files containing
object descriptions, and other useful functions.

3.1 Object interfaces
org.nees.md.MetadataObject

This interface represents a NEESgrid metadata object. This is the interface that lets you
retrieve and modify the relation values for an object. It is in effect an in-memory
representation of one version of a metadata object, which can be used both to retrieve
relation values and modify relation values so that the modified object can be uploaded to
the repository as a new version. Because links between objects are represented as
relations, this is also the interface that makes it possible to traverse the links between
objects.

org.nees.md.Reference

This interface represents a reference to a NEESgrid metadata object. It identifies both the
object and version number, making it possible to retrieve any version of a given object.
References can be used as the values of relations; see below.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 7

org.nees.md.Relation

This interface represents a relation that associates an object with a value. The value may
be either of a primitive type or a reference. Each relation is named with an identifier,
which distinguishes it from other relations on the same object or in the same type. You
will rarely use this interface directly; instead, convenience methods are provided in the
NMDS API that allow relation values to be accessed and modified directly.

3.2 Service interfaces
org.nees.repo.service.RepositoryService

This interface provides access to a NEESgrid repository. It allows you to create, retrieve,
and update objects, as well as to retrieve information about objects. It also allows you to
add and remove objects from containers, and to search for objects according to the values
of their relations. This interface extends
org.nees.md.service.MetadataService, a simpler service that provides
basic functionality.

3.3 Utility classes
org.nees.md.Namespace

This class provides methods for constructing and parsing ID’s with namespace parts.

org.nees.md.MetadataFactory

This class provides a safe means of constructing objects implementing the
MetadataObject, Reference, and Relation interfaces. Safe, meaning it will
generate instances of whatever class is most appropriate for the implementation of
NMDS your application is using.

org.nees.repo.Schema

This utility class provides a number of methods for creating, modifying, and managing
object types, as well as a variety of other utility methods.

4 Interacting with the repository
Meaningful interactions between applications and the repository follow a number of
specific patterns, which are described below.

4.1 Stages of interaction
All meaningful NMDS interactions proceed through at least three of these stages, in
order:

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 8

4.1.1 Acquiring a service instance
The first stage of any interaction with the repository is to acquire a service instance. This
is always an instance of org.nees.repo.service.RepositoryService. This
is done using org.nees.repo.service.RepositoryServiceFactory (see
code example in section 5.1.2). The factory service instance must be configured so that it
can locate the repository service. How it is configured depends on the factory
implementation (see code example in section 5.1.1). Once an application has acquired a
single service instance, it can perform any number of operations with the repository,
subject only to the continuing availability of the repository (which for instance may
become unavailable if the network goes down).

4.1.2 Acquiring a reference
In order to retrieve any object from the repository, the client must have a reference to
some version of that object. Applications can create references if they know the ID of an
object in the repository, or they can create an object of a known type, which will return a
valid reference. Every NEESgrid repository contains a “root container” whose ID is
known and which contains all of the other objects visible to the user in the CHEF
repository browser (see code example in section 5.1.3). In addition, a client can query the
repository for objects that match a criterion, and acquire references that way (see section
5.6).

4.1.3 Retrieving an object
To find out the values of an object’s relations, the object must be retrieved. This can be
done either explicitly (see code example in section 5.2.1), or implicitly, by querying the
service for the values of individual relations (see code example in section 5.2.6). Once a
client has retrieved an object, it can use the object indefinitely, even if the repository
becomes unavailable. The object will never expire, although other clients may create new
versions of it. Some of the values of an object’s relations may be references, which the
client can use to retrieve other objects (see code example in section 5.2.7). In this manner
it can traverse the web of relations defined in the application or domain-specific metadata
model.

4.1.4 Modifying an object
To modify an object, a client must create a new version of it. This is done by modifying a
MetadataObject and submitting it to RepositoryService as a new version.
This may fail, because the object may have been modified by another client since the first
client retrieved it. In this case, NMDS throws an
org.nees.md.service.ConcurrentAccessException, and the client must
decide (with or without user input) whether to abandon its change, override the other
client’s change, or merge its changes to the object with the changes made by the other
client. For code examples see section 5.3.3.

5 Code examples
The following code examples demonstrate typical NMDS interactions.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 9

5.1 Basic interactions

5.1.1 Creating and registering a factory
To acquire a RepositoryService instance, you must first create a factory. If you
register the factory using RepositoryServiceFactory’s setFactory method,
you can then use it at any time afterwards to create an NMDS instance. The following
example creates and registers a factory that connects to a service at
http://neespop.mysite.edu:8030/axis/services/nmds.

import java.net.URL;
import org.nees.repo.service.RepositoryServiceFactory;
import org.nees.repo.axis.client.NMDSClientFactoryImpl;

…

URL url = new
URL(“http://neespop.mysite.edu:8030/axis/services/nmds”);

// create and register an NMDSClientFactory
RepositoryServiceFactory.setFactory
 (new NMDSClientFactoryImpl(url));

5.1.2 Acquiring a service instance
Once you have registered a factory, acquiring a service instance takes just one call to
RepositoryServiceFactory’s newRepositoryService method.

import org.nees.repo.service.RepositoryService;

…

RepositoryService service =
RepositoryServiceFactory.getFactory().newRepositoryService(
);

5.1.3 Creating a reference
To create a reference, use the metadata factory’s newReference method. You can
create a reference to any version of the object. If you do not specify a version, the version
will default to 0.

import org.nees.md.Reference;
import org.nees.md.MetadataFactory;

…

String id = “i483583742.43”;
int version = 5;

Reference myReference =
MetadataFactory.getFactory().newReference(id, version);

Futrelle www.neesgrid.org 10/7/2003

http://myneespop.mysite.edu:8030/axis/services/nmds
http://neespop.mysite.edu:8030/axis/services/nmds

NMDS User Guide Page 10

5.2 Retrieving objects and relations

5.2.1 Retrieving objects
To retrieve an object, pass a reference to it to the repository service’s get method. For
instance, to get the object referred to in the code fragment in section 5.1.3, do this:

import org.nees.md.MetadataObject;
…
MetadataObject myObject = service.get(myReference);

If the reference refers to a nonexistent object, get throws an
ObjectNotFoundException. To retrieve a group of objects, pass an array of
References to get. Like this:

Reference[] someReferences;

… do something to populate someReferences …

MetadataObject myObjects[] = service.get(someReferences);

5.2.2 Retrieving different versions of an object
The repository may contain multiple versions of a given object. Each reference refers to a
specific version of an object. Suppose you have an object called myObject. To get a
reference to that object, call getSelf on the object:

Reference refToObject = myObject.getSelf();

To find out the object’s version, call getVersion on the reference:

int version = theVersion = refToObject.getVersion();

To get a reference to the previous version of the object, create a reference with a
decremented version number:

Reference previousVersion =
 MetadataFactory.getFactory().newReference
 (refToObject.getID(), refToObject.getVersion() –
1);

To get the first version of the object, create a reference with version number 0.

Reference firstVersion =
 MetadataFactory.getFactory().newReference
 (refToObject.getID(), 0);

To get a reference to the latest version of an object, call RepositoryService’s
getLatestVersion method:

Reference latestVersion =

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 11

 service.getLatestVersion(refToObject);

Note that this will return a reference to the latest version of the object at the time
getLatestVersion is called. If the object is subsequently updated, the reference will
not change.

5.2.3 Retrieving the root container
To retrieve the root container of a NEES repository, you must first create a reference to it,
then retrieve it. The ID of the root container is “nees:rootContainer”. Unless you
know which version of the root container you want to retrieve, you should retrieve the
latest version of it:

import org.nees.md.Reference;
import org.nees.md.MetadataFactory;

…

Reference ref = MetadataFactory.getFactory().newReference
 (“nees:rootContainer”);

// get the latest version of the container
ref = service.getLatestVersion(ref);
MetadataObject rc = service.get(ref);

For examples of how to work with containers, see section 5.4.

5.2.4 Getting relation values
Once an object has been retrieved, the values of its relations become available. The
following subsections demonstrate how to retrieve relation values from an object. They
assume that an object has already been retrieved, and that it is stored in a variable called
myObject. They further assume that the object has two relations called “aRelation”
and “anotherRelation”.

5.2.5 Getting all relations
To get all the relations of an object, call MetadataObject’s getRelations
method. This is rarely what you will want to do; instead, you will most likely want to get
selected relation values, described in section 5.2.6.

Relation[] theRelations = myObject.getRelations();

Each Relation has an ID and a target. To get the ID of a Relation, call Relation’s
getID method:

for(int j = 0; j < theRelations.length; j++) {
 String rID = theRelations[j].getID();
 … do something …
}

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 12

An object may have more than one Relation with the same ID. The targets associated
with a given relation ID are considered the values of the relation on that ID for the given
object. There are six types of targets: date, double, int, long, reference, and string. To find
out a Relation’s target type, call Relation’s getType method:

for(int j = 0; j < theRelations.length; j++) {
 String rID = theRelations[j].getID();
 String rType = theRelations[j].getType();
 … do something …
}

There are six target type ID’s, one for each target type, that are defined as constants in the
Relation class: DATE_TYPE_ID, DOUBLE_TYPE_ID, INT_TYPE_ID,
LONG_TYPE_ID, REFERENCE_TYPE_ID, and STRING_TYPE_ID. To get the target
of a relation, you can either call getTarget, or one of the convenience methods
getDateTarget, getDoubleTarget, getIntTarget, getLongTarget,
getReferenceTarget, and getStringTarget:

for(int j = 0; j < theRelations.length; j++) {
 String rID = theRelations[j].getID();
 String rType = theRelations[j].getType();
 if(rType.equals(Relation.INT_TYPE_ID)) {
 Integer k = (Integer) theRelations[j].getTarget();
 … or: …
 int k = theRelations[j].getIntTarget();
 }
}

If you only want to get the ID’s of all the relations, you can call getRelationIDs.
This will return only the set of distinct relation ID’s for this object.

5.2.6 Getting selected relation values
Rather than calling getRelations, it is much more convenient to get selected
relations whose ID’s you know. This can be accomplished with MetadataObject’s
methods getDate, getDouble, getInt, getLong, getReference, and
getString.

String valueOfARelation = myObject.getString(“aRelation”);
Reference valueOfAnotherRelation =
 myObject.getReference(“anotherRelation”);

This will throw a RelationTargetTypeException if the value of the relation for
the object is not of the expected type (e.g., if you called getDate on a relation whose
value was of type string).

To get multiple values for a selected relations, call one of the following methods:
getDates, getDoubles, getInts, getLongs, getReferences, and

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 13

getStrings. This is also the preferred technique to find out how many values a
relation has.

String valuesOfARelation[] =
 myObject.getStrings(“aRelation”);
if(valuesOfARelation.length > 0) {
 … do something …
}

Relations are unordered sets, so you should not write code that depends on the order the
values are returned in the array.

5.2.7 Following a link
Relations whose values are references allow a client to follow a link from one object to
another. Suppose myObject’s anotherRelation relation has a reference to another
object as its value. We can get the reference and use it to retrieve the other object:

Reference ref= myObject.getReference(“another Relation”);
MetadataObject otherObject = service.get(ref);

Now we can get the values of otherObject’s relations. Recursively applying this
principle can allow us to use hierarchical object networks, as well as other, web-like
networks of objects linked together by references.

5.2.8 Titles and creation/update times
There are several pieces of information you can find out about an object given a reference
to it. You can find out the descriptive title of an object, as well as when the object was
created and updated. To find the title, call RepositoryService’s getTitle
method:

String title = service.getTitle(ref);

To find out when the object was created, call getTimeCreated:

java.util.Date creationTime = service.getTimeCreated(ref);

This is the time at which the first version of the object was created. To find out when the
object was updated, call getTimeUpdated:

java.util.Date updateTime = service.getTimeUpdated(ref);

This is the time that the version of the object referred to by ref was created. Both of
these times are represented with millisecond resolution.

5.3 Modifying the repository
Once an object is put in the repository, it cannot be modified. However, a new version of
the object can be put in the repository.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 14

5.3.1 Creating objects
To create an object of a given type, use RepositoryService’s create method.
Pass it the ID of the type, and a descriptive title, and it will return a reference to the
newly-created object. For more about types see section 5.5.

Reference aNewObject = service.create
 (“aTypeID”, “my object”);

If there is no type with the given type ID, create will throw a
TypeNotFoundException.

If you know the ID you want to give the object, you can pass it in as a third argument to
create. This ID must not be in use anywhere in the repository, or create will throw a
MetadataServiceException.

5.3.2 Deleting objects
To delete an object, call RepositoryService’s delete method. This will create a
new version of the object which is marked as deleted, and return a reference to the new
version. You can check if an object has been deleted by calling isDeleted.

Reference deletedObject = service.delete(ref);
if(service.isDeleted(service.getLatestVersion(ref))) {
 … do something …
}

There is no way to remove existing object versions from the repository.

5.3.3 Updating objects
Updating an object—creating a new version of the object with modified relation values—
is a three-step process. First, you must retrieve the object. Second, you must modify the
relation values. And finally, you must create a new version of the object based on your
modifications.

5.3.3.1 Modifying relation values
As with retrieving relation values, there are sets of six methods defined on
MetadataObject for modifying relation values, one for each relation target type. To set a
relation value, call set and pass it the relation ID and a value of the appropriate type:

myObject.set(“aRelation”, “a new value for the relation”);
myObject.set(“anotherRelation”, 48.275);

set replaces any existing relation value with the one you pass in. To add a value to a
relation, call add, similarly (continuing our example):

myObject.add(“aRelation”, “an additional value”);
myObject.add(“anotherRelation”, -42.5);

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 15

In this case each relation will now have two values. To remove all values for a relation,
call remove (continuing our example):

myObject.remove(“aRelation”);

In this case the relation with ID “aRelation” now has no values. To remove just one
value, pass the value into remove as well (continuing our example):

myObject.remove
 (“aRelation”, “a new value for the relation”);

In this case the relation with the ID “aRelation” now has one value. The equals
method is used for comparison. If there are two or more relation targets that match, only
the first relation is removed. So in this example

anObject.add(“temperatures”, 74);
anObject.add(“temperatures”, 73);
anObject.add(“temperatures”, 74);
anObject.remove(“temperatures”, 74);

anObject has two relation values for “temperature” at the end, one of which is 74
and the other of which is 73.

5.3.3.2 Creating a new version of an object
Once you have modified all the relations you want to modify, pass the
MetadataObject to RepositoryService’s update method. This example
retrieves an object, modifies one of its relations, and calls update:

MetadataObject person = service.get(refToPerson);
person.set(“weight”, person.getDouble(“weight”) – 3.2);
refToPerson = service.update(person);

update returns a reference to the new version of the object. You can only update the
latest version of an object.

5.3.4 Handling concurrency issues
Multiple clients may access the repository simultaneously. Because of this, one client
may update an object while another client is modifying it. When the second client tries to
update the object, the version that it based its modifications on is no longer the latest
version, and the update will fail with a ConcurrentAccessException. In fact, the
only point at which the latest version of an object can be unambiguously determined is
the point at which an update succeeds.

When writing a client, you must catch ConcurrentAccessException every time
you call update, and take one of the following actions:

1. abandon the update

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 16

2. retrieve the latest version, merge it and your version, and retry the update

Because this choice, and the details of how to merge objects, will be different for
different applications, the NMDS API will not automatically take either of these actions
for you. In this example, the client abandons the update:

MetadataObject person = service.get(refToPerson);
person.set(“weight”, person.getDouble(“weight”) – 3.2);

try {
 refToPerson = service.update(person);
} catch(ConcurrentAccessException x) {
 // do nothing …
}

In this version, the client tries to subtract 3.2 from the value of the “weight” relation,
even if the object is updated while the client is trying to make the modification:

while(true) {
 try {
 refToPerson =
service.getLatestVersion(refToPerson);
 MetadataObject person = service.get(refToPerson);
 person.set
 (“weight”, person.getDouble(“weight”) – 3.2);
 refToPerson = service.update(person);
 } catch(ConcurrentAccessException x) {
 continue;
 }
 break;
}

5.3.5 About versioning and links
A link (a reference from one object to another) links an object to a specific version of
another object. If the linked-to object is updated, the link will still refer to the older
version of the object. In other words, if object αi (i.e., object α, version i) links to object
βj, and object β is updated (creating object βj+1), αi will still link to βj, not to βj+1. For
some situations and applications, this may be the correct behavior. If it’s not, your
application will need to update α when it updates β. An alternative strategy is: after
following a link, retrieve the latest version of the linked-to object, not the version that is
specifically linked to.

5.3.6 Copying objects
To copy an object, pass a reference to that object to RepositoryService’s copy
method. This will return a reference to a new object, which is identical in every way
except that it has a different ID, and a version number of 0.

Reference aCopy = service.copy(ref);

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 17

Copy only copies the object’s relation values. It does not copy any objects that may be
linked to the object by relations whose target type is reference (see section 5.2.7).

5.4 Containers
The NMDS API provides a means of organizing objects in containers. Containers are
objects that, like all other objects, can link to sets of other objects. However, containers
provide convenient API’s for managing their contents.

5.4.1 Creating a container
To create a container, call RepositoryService’s createContainer method.
Pass it a descriptive title. It will return a reference to the new container. Containers are
initially empty.

Reference myContainer =
 service.createContainer(“My new container”);

5.4.2 Getting the contents of a container
To get the contents of a container, call RepositoryService’s getContents
method on a reference to the container. It will return an array of references to the objects
in the container. There is no guarantee that the objects will be in any particular order in
the array, or that the order will be the same if you call this method more than once on a
given container.

Reference cr; // a reference to a container
…
Reference contents[] = service.getContents(cr);

If any of the contents of a container are themselves containers, you can get their contents
using this same method.

5.4.3 Determining if an object is a container and traversing a
container hierarchy

To determine if an object is a container, call RepositoryService’s isContainer
method on a reference. You can combine this with getContents to traverse a
container hierarchy, as in this example:

void traverse(Reference c) {
 Reference contents[] = service.getContents(c);
 for(int j = 0; j < contents.length; j++) {
 if(service.isContainer(contents[j]) {
 traverse(contents[j]);
 } else {
 … do something with each object …
 }
 }
}

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 18

There is no restriction on which objects can be in which containers. A container could
even be in itself. If a container network contains loops (e.g., a container contained in
itself, or a container α containing container β which itself contains container α), a simple
traversal algorithm such as the one above will never terminate. Either avoid creating
loops in your container network, or use a different traversal algorithm.

5.4.4 Determining what containers an object is in
To find all the containers that an object is in, you can call RepositoryService’s
getCurrentContainers method, but beware: this will return any version of any
container that contains the object, so it might return more than one version of each
container, and it might return containers which once contained the object, but which no
longer contain it. If you are just interested in which containers currently contain the
object, call getCurrentContainers, like this:

Reference myObject;
…
Reference containers[] =
service.getCurrentContainers(myObject);
if(containers.length == 0) {
 System.out.println(“object “ + myObject + “ is not in
any container”);
}

This call can sometimes be slow, especially if the object has ever been in a container that
was updated many times.

5.4.5 Adding an object to a container
To add an object to a container, use RepositoryService’s add method. This will
create a new version of the container that contains the object you added, and return a
reference to the new version of the container. Retain this reference unless you specifically
want to use the older version of the container. This is correct:

Reference myContainer, objectToAdd;
…
myContainer = service.add(objectToAdd, myContainer);

This is incorrect in almost every situation:

Reference myContainer, objectToAdd;
…
service.add(objectToAdd, myContainer); // WRONG!!

Since add modifies the repository, you must catch ConcurrentAccessException
when you call it.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 19

5.4.6 Removing an object from a container
Removing an object from a container is done with the remove method. The syntax is
exactly the same as add, except that it has the effect of creating a new version of the
container that no longer contains the object you removed.

Removing an object from a container does not delete the object. Indeed, after you remove
an object from a container it may still be in any number of other containers from which
you did not delete it. Deleting objects and removing them containers must be done
separately. If you delete an object but do not remove it from a container, the container
will still contain the version of the object immediately preceding the deleted version. To
make an object completely inaccessible, remove it from all containers that it is currently
in, and then delete it:

Reference objectToDelete;
…
service.removeLatestFromCurrentContainers
 (objectToDelete, true);
service.delete(objectToDelete);
// you must catch ConcurrentAccessException here

See section 5.4.8 for more details on removeLatestFromCurrentContainers.

5.4.7 Concurrency
If you want to add or remove an object from a container regardless of whether or not
other clients have modified it since you acquired a reference to it, use the
addToLatestVersion and removeFromLatestVersion variants of add and
remove. These routines acquire a reference to the latest version of the container and
update it. This is different from calling getLatestVersion on the container and then
calling add or remove on it, because if you do that, another client can modify the
container between the call to getLatestVersion and the call to add or remove.
See section 5.4.8 for code examples.

5.4.8 Updating container hierarchies
When an object is updated, it is often desirable to update any containers it is in as well as
any containers above them in the container. If this is not done, it may not be possible to
access the modified object by traversing the container hierarchy. To update containers
when updating an object, use RepositoryService’s
updateAndUpdateContainers method in place of update:

MetadataObject person = service.get(refToPerson);
person.set(“weight”, person.getDouble(“weight”) – 3.2);
refToPerson = service.updateAndUpdateContainers(person);

Because adding and removing an object from a container updates the container, there are
variants of add and remove that update containers. addAndUpdateContainers
works like add, except it updates all the ancestor containers of the container to which
you are adding an object; removeAndUpdateContainers works the same way for

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 20

removing an object. addToLatestVersion and removeFromLatestVersion
provide a flag specifying whether you want to update containers. For instance, to remove
an object from a container and update all the containers in the hierarchy, use this
construct:

Reference myObject, myContainer;
…
myContainer =
 service.removeFromLatestVersion
 (myObject, myContainer, true);

To completely remove an object from all the containers that currently contain it, and
update the container hierarchy, use the removeLatestFromCurrentContainers
method. It will return an array of references to all the containers that contained the object,
and were updated.

Reference myObject;
…
service.removeLatestFromCurrentContainers(myObject, true);

5.5 Types
Every object has a type. Types can extend other types in a hierarchy of types, much the
way classes extend other classes in Java. Types constrain the allowed relations for an
object, as well as the target type and cardinality of each relation. The NMDS API
provides a number of convenience methods for determining type membership and finding
out relation constraints. The org.nees.repo.Schema class provides a
comprehensive set of methods for creating, modifying, and querying types.

5.5.1 Getting the type of an object
Each type is identified with a unique ID. To get the ID of the type of an object, call
RepositoryService’s getType method, passing it either a reference to the object
or the object itself.

MetadataObject myObject;
…
String typeID = service.getType(myObject);

or

Reference myReference;
…
String typeID = service.getType(myReference);

5.5.2 Determining type membership of an object
Suppose type α extends type β, which itself extends type χ. Every object of type β is
considered to be of type χ, and similarly, every object of type α is considered to be of
type β and therefore of type χ. There is a “root type” of which all types are extensions,
either directly or through a chain of extensions.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 21

To determine the type membership of an object, use RepositoryService’s isa
method, passing it a reference to the object and the ID of the type you want to test.
Suppose we have two types representing two different kinds of sensors, with ID’s
“sensor:lvdt” and “sensor:sg”. Further suppose that each of those types extends
a type with the ID “sensor:sensor”. The following code determines if a reference
refers to a sensor, and if so, what kind:

Reference aSensor;
…
if(service.isa(aSensor, “sensor:sensor”)) {
 if(service.isa(aSensor, “sensor:lvdt”)) {
 System.out.println(“sensor is an LVDT”);
 } else if(service.isa(aSensor, “sensor:sg”)) {
 System.out.println(“sensor is a strain gauge”);
 }
} else {
 System.out.println(“object is not a sensor”);
}

5.5.3 Relation constraints
An object’s type constrains which relations it may have, as well as the target type and
cardinality of each relation1. To find out which relations are allowed for a type, use
Schema’s getRelations method, passing it the type ID. It will return an array of
relation ID’s.

RepositoryService service;
String typeID;
…
String[] relations =
 (new Schema(service)).getRelations(typeID);
for(int j = 0; j < relations.length; j++) {
 System.out.println
 (relations[j] +
 “ is defined for type with ID “ +
 typeID);
}

To find out the target type of a relation, use RepositoryService’s
getRelationType method and pass it the type ID and relation ID. It will return one
of the target type ID constants from the Relation interface (see section 5.2.5 for a
list).

String relationID;
…
String myObjectsType = service.getType(myObject);
String rType = service.getRelationType
 (myObjectsType, relationID);

1 As of release 2.0, NMDS does not enforce relation constraints. Validation against
relation constraints is planned for later releases.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 22

if(rType.equals(Relation.DOUBLE_TYPE_ID)) {
 double values[] =
 myObject.getDoubles(relationID);
}

To find out the cardinality of a relation, use RepositoryService’s
getRelationMin and getRelationMax methods, which return the minimum and
maximum number of values allowed for a given relation on a given type. If there is no
maximum, getRelationMax will return Schema.CARDINALITY_UNBOUNDED.

String relationID;
…
String myObjectsType = service.getType(myObject);
int rMin = service.getRelationMin
 (myObjectsType, relationID);
int rMax = service.getRelationMax
 (myObjectsType, relationID);
Vector values = myObject.get(relationID);
if(values.size() < rMin) {
 System.out.println(“too few values”);
} else if(rMax != Schema.CARDINALITY_UNBOUNDED &&
 values.size() > rMax) {
 System.out.println(“too many values”);
}

5.5.4 Allowed types for links
For a relation whose target type is reference (i.e., a link), you can discover what types of
objects you are permitted to link to using that relation. To find out if a particular type can
be linked to, call Schema’s isAllowedType method.

String carTypeID = “auto:car”;
String engineTypeID = “auto:engine”;
String powerSource = “auto:powerSource”;
String seatTypeID = “auto:seat”;
…
Schema schema = new Schema(service);
if(schema.isAllowedType
 (carTypeID, powerSource, seatTypeID)) {
 System.out.println(“A car may not have a “ + seatTypeID
+ “ as a power source”);
}

To get a list of the ID’s of all allowed types for a given relation (whose target type is
reference) on a given type, use the following idiom:

String allowed[] =
 schema.getAllowedTypes(schema.getType(typeID));

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 23

5.6 Search
The NMDS API provides limited search capabilities2. They can be used to locate objects
based on various criteria.

5.6.1 Searching for objects with a relation value
To search for an object of a specific type that has a relation with a target that matches a
specific value, use RepositoryService’s matchTarget method. There are two
variants, one for string targets and one for reference targets (other target types will be
supported in later releases). They each return an array of references to objects that match.

String personTypeID = “person”;
Reference joes[] = service.matchTarget
 (personTypeID, “name:first”, “Joe”);

5.6.2 Searching in a container
Two variants of matchTarget called matchTargetInContainer allow you to
limit your search to the contents of a particular container.

5.6.3 Searching for objects updated since a certain time
To find all objects updated at or since a given time, call RepositoryService’s
getUpdatedSince method, passing it a java.util.Date. It will return an array
of references to all objects updated at or since the time represented by the
java.util.Date.

java.util.Date then = new java.util.Date();
try {
 Thread.currentThread().sleep(3000);
 Reference since[] = service.getUpdatedSince(then);
 System.out.println(since.length +
 “ objects updated in the last 3 seconds”);
} catch(InterruptedException x) {
 // do nothing
}

Update times are represented at millisecond resolution and are determined by the clock of
the machine hosting the repository. In order to measure update times against your client,
your client machine’s clock should be synchronized to a reliable, external clock source.
Updating an object takes time, and NMDS guarantees only that the update time recorded
in the repository is between the time the update was initiated and the time it completed.

To find all versions of a particular object since a certain time, call a variant of
getUpdatedSince, passing it a reference to the object in question.

Reference myObject;
…

2 More extensive search capabilities are planned for later releases.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 24

java.util.Date then = new java.util.Date();
try {
 Thread.currentThread().sleep(3000);
 Reference since[] = service.getUpdatedSince
 (then, myObject);
 if(since.length > 0) {
 System.out.println(“my object was just updated”);
 }
} catch(InterruptedException x) {
 // do nothing
}

5.7 Namespaces
Object and type ID’s in the repository must be unique. Because this is a difficult
requirement to meet when the repository has many distributed users, NMDS provides a
namespace facility. Each ID can have a local part and a namespace part. The combination
of both must be unique, but two ID’s with a different namespace part can have the same
local part and still be distinct.

To use namespaces, use the org.nees.md.Namespace utility class. To create an ID
with a local part and a namespace part, call Namespace’s id method, passing it the
namespace part and the local part:

String carFender = Namespace.id(“auto”, “fender”);
…
String fenderGuitar = Namespace.id(“guitar”, “fender”);

Alternatively, you can use Namespace to create many ID’s with the same namespace
part:

Namespace phone = new Namespace(“phone”);
String receiverID = phone.id(“receiver”);
String numberID = phone.id(“number”);
… etc …

To get the different parts of an ID, call Namespace’s getNamespacePart and
getLocalPart methods. Continuing our previous example:

Namespace.getNamespacePart(numberID)

will return “phone”, and

Namespace.getLocalPart(numberID)

will return “number”.

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 25

6 Appendix A: example application
This example application connects to an NMDS service and prints a hierarchical listing
of all objects contained in the root container or any of its children. For each object, it
prints the type of the object, the object’s title, and the time the object was last updated.

The application displays only the latest version of each object. To accomplish this, it calls
getLatestVersion on each reference it retrieves from the service.

This application does not modify any of the objects in the repository.

import java.net.URL;

import org.nees.md.*;
import org.nees.md.service.*;
import org.nees.repo.*;
import org.nees.repo.service.*;
import org.nees.repo.axis.client.*;

public class ListContainers {
 RepositoryService repo;
 Schema schema;

 public ListContainers(RepositoryService r) {
 repo = r;
 schema = new Schema(r);
 }

 /**
 * Print out a listing of the containers and objects
 * in this container
 * @param c the container to start from
 */
 public void listContainers(Reference c)
 throws MetadataServiceException {
 listContainers(c, 0);
 }

 void indent(int n) {
 for(int i = 0; i < n; i++) {
 System.out.print(" ");
 }
 }

 void listContainers(Reference c, int level)
 throws MetadataServiceException {
 // get the latest version of the container
 c = repo.getLatestVersion(c);
 // get references to all the contained objects
 Reference contents[] = repo.getContents(c);
 // iterate over the contents
 for(int i = 0; i < contents.length; i++) {
 // get the latest version of each sub-object
 Reference o =
 repo.getLatestVersion(contents[i]);

Futrelle www.neesgrid.org 10/7/2003

NMDS User Guide Page 26

Futrelle www.neesgrid.org 10/7/2003

 indent(level);
 // print out the type ID and title of the
object
 System.out.print(repo.getType(o) + " \""
 + repo.getTitle(o) + "\"");
 // print out last updated time
 System.out.print(" " + repo.getTimeUpdated(o));
 System.out.println();
 // if the object is itself a container, recur
 if(repo.isContainer(o)) {
 listContainers(o, level + 1);
 }
 }
 }

 public static void main(String args[])
 throws Exception {
 // the URL of the NMDS service
 String nmdsURL = args[0];

 // register a metadatafactory
 // (this is so we can call newReference below)
 MetadataFactory.setFactory
 (new MetadataFactoryImpl());

 // get an NMDS client
 NMDSClientFactory factory =
 new NMDSClientFactoryImpl
 (new URL(nmdsURL));
 RepositoryService repo =
 factory.newRepositoryService();

 ListContainers lc = new ListContainers(repo);

 // get the root container
 Reference root =
 MetadataFactory.getFactory().newReference
 ("nees:rootContainer");
 root = repo.getLatestVersion(root);

 // now list the contents of the root container
 lc.listContainers(root);
 }
}

	Summary
	About this document

	NEESgrid Repository Object Model
	Overview
	Important concepts
	Objects
	Relations
	Types
	References
	Versioning
	Containers

	Overview of the NMDS API
	Object interfaces
	Service interfaces
	Utility classes

	Interacting with the repository
	Stages of interaction
	Acquiring a service instance
	Acquiring a reference
	Retrieving an object
	Modifying an object

	Code examples
	Basic interactions
	Creating and registering a factory
	Acquiring a service instance
	Creating a reference

	Retrieving objects and relations
	Retrieving objects
	Retrieving different versions of an object
	Retrieving the root container
	Getting relation values
	Getting all relations
	Getting selected relation values
	Following a link
	Titles and creation/update times

	Modifying the repository
	Creating objects
	Deleting objects
	Updating objects
	Modifying relation values
	Creating a new version of an object

	Handling concurrency issues
	About versioning and links
	Copying objects

	Containers
	Creating a container
	Getting the contents of a container
	Determining if an object is a container and traversing a container hierarchy
	Determining what containers an object is in
	Adding an object to a container
	Removing an object from a container
	Concurrency
	Updating container hierarchies

	Types
	Getting the type of an object
	Determining type membership of an object
	Relation constraints
	Allowed types for links

	Search
	Searching for objects with a relation value
	Searching in a container
	Searching for objects updated since a certain time

	Namespaces

	Appendix A: example application

