

Technical Report NEESgrid-2003-18

www.neesgrid.org

Draft Whitepaper Version: 1.0

Last modified: October 4, 2003

NFMS User Guide

(DRAFT)

Jeff Gaynor, Joe Futrelle1

Feedback on this document should be directed to jjg@jqhome.net

1 National Center for Supercomputing Applications, Champaign, IL 61821

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under Award
Number CMS-0117853.

mailto:jjg@jqhome.net

NFMS User Guide 2

1 Summary ...3
2 Introduction to the NFMS..3

2.1 Prerequisites for writing an NFMS application ..3
3 The easy way: using NFMSFacade ..3

3.1 Introduction. ..3
3.2 Creating an NFMSFacade instance ..4
3.3 Getting the right credentials..4
3.4 Setting the transfer mode...4
3.5 Retrying operations ...5
3.6 Uploading..5

3.6.1 Appending ..5
3.6.2 New files ...6
3.6.3 Comment on versioning ...6

3.7 Downloading ...6
3.8 Getting and updating information about a file...7
3.9 A complete example...8

4 Doing tasks directly ...9
4.1 How is uploading supposed to work?..9
4.2 How do I connect to the server?..9
4.3 How do I request a transfer?...10
4.4 How do I do a grid ftp transfer to NFMS? ..10
4.5 How do I stop a transfer?..10
4.6 Tell me about file names..10
4.7 What protocols do you support?..11
4.8 What do you mean that I shouldn't version all the data from my experiment?..11
4.9 How do I disconnect from the server?...11

5 Glossary ..11
6 Final thoughts..12

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 3

1 Summary
This user guide describes the 2.0 release of NEESgrid File Management Service (NFMS). NFMS
provides clients with the ability to locate files independently of how and where they are stored,
as well as the ability to negotiate transactions with storage systems. This manual is geared
toward users wishing to write an NFMS application and shows how to implement the class
NFMSFacade to carry out important tasks, thereby reducing the amount of manual coding done
by the user. A guide to performing these tasks manually is also included, along with examples
demonstrating both processes and a glossary of terms.

2 Introduction to the NFMS

This document describes the NEESgrid File Management Service (NFMS). NFMS provides
clients with the ability to locate files independently of how and where they are stored, as well as
the ability to negotiate transactions with storage systems. NFMS is designed to accommodate a
variety of storage architectures and data transfer protocols, including GridFTP. Using NFMS, a
client can reliably and securely store and retrieve data from a NEESgrid repository without
having to keep track of the physical location of the file or use any APIs specific to any particular
storage architecture. Because of this, storage architectures can be migrated without having to
rewrite NFMS-based applications. NFMS is a connectionless protocol, meaning that an NFMS
server can resume a transaction even if it was restarted during the transaction. It is integrated
with the NEESgrid Metadata Service, so that metadata about files and the data in them can be
managed along with the files.

This document describes the 2.0 release of NFMS, which is a WSDL web service. In later
releases, NFMS will be made available as a Grid service using the Open Grid Services
Architecture.

2.1 Prerequisites for writing an NFMS application

You should have a functional NFMS installation. NFMS is installed on every NEES-Pop as a
standard part of the NEESgrid release. You also must have at least version 1.4.1 of Java in order
to get certain security classes needed for the Globus Java CoG. You will also need a version of
the CoG installed compatible with the Globus toolkit installed on the NFMS server.

Finally, the Java programming skill required to develop NFMS applications is minimal. You
don't need more that a basic idea of how to write classes in Java to use NFMS. The entire API (as
outlined in the NFMS Reference) is small. Putting files on the server or retrieving them is a
straightforward matter.

3 The easy way: using NFMSFacade

3.1 Introduction.

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 4

There is a helper class, org.nees.nfms.NFMSFacade, which allows an application to do many
common tasks with a minimum of coding. Really about all that is needed is a valid credential and
the URL to the service.

This class will carry out most all the details needed: It will connect to the service, pass along the
correct credentials, initiate the transfer and if so requested, will continue to retry an operation
until it succeeds.

We assume that there is an instance of NFMSFacade in the variable _NFMSFacade in what
follows. Also, we omit the obligatory try ... catch block that should surround these examples.

3.2 Creating an NFMSFacade instance

This is quite straightforward, as long as the web-address or URL of NFMS service is known.
Typical code would be
URL nfmsURL = new URL("http://neespop.myuni.edu:8080/axis/services/nfms");
// use the correct address for your installation.
NFMSFacade _NFMSFacade = new NFMSFacade(nfmsURL);
// Ready for action...

3.3 Getting the right credentials

Valid credentials must exist as an instance of org.ietf.jgss.GSSCredential in order
to use NFMSFacade. This means that clients have to use version 3.0 or higher of the Globus
Toolkit. The normal mode of operation is to try and load the credentials from the default location
specified during installation of Globus. All of the methods in NFMSFacade that do not
specifically require passing the credential do this. Clients may also specify the credential to be
used in all operations and this becomes the default for subsequent operations in NFMSFacade
(but no place else, it should be emphasized). To query the current credential, issue
GSSCredential cred = _NFMSFacade.getCredential();

If a different credential is to be used for all subsequent operations in, say, the variable cred,
issue
_NFMSFacade.setCredential(cred);

to reset the credential. Again, this does not effect Globus' installation, it merely sets the
credential for use in NFMSFacade.

3.4 Setting the transfer mode.

Since NFMSFacade uses GridFTP to do the transfers, developers should be aware of the fact
that, just like regular ftp, there are two ways or modes in which files may be transferred, binary
(sometimes called image) or ascii (also known as text). In binary mode, the entire file is treated
as if it is binary, i.e., that it is not human-readable and must be faithfully transferred unchanged
in the slightest detail. This is in opposition to ascii mode. Ascii (from American Standard Code
for Information Interchange) is human readable. In particular, different types of computers
represent the end of line markers (plus a few other markers) in different ways. In this mode,
whenever one of these markers is found, it is converted accordingly for the computer system.
This is fine in many instances, however, in cases where the file is actually computer-readable,

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 5

the effect is simply catastrophic and not really readily reversible. Therefore, it is important that
the correct mode be chosen for the operation.

The default is binary and that is generally the safest. To change the mode, there are two methods.
For examples, to set the mode to binary, an application would invoke
_NFMSFacade.setBinaryTransferType();

while to put the transfers into ascii mode, a client invokes
_NFMSFacade.setASCIITransferType();

Notice that neither of these methods requires an argument.

3.5 Retrying operations

There are two modes of operation, fail-fast and retry. As the name implies, fail-fast mode will
try any operation once and promptly exit if there is any problem. This is the default and it is a
wise one, especially while developing a client. In retry mode, NFMSFacade will continue to
redo a failed operation at a given time interval until it succeeds. This is useful in cases where
there can be well-understood problems with the operation (e.g. certain network operations
timing-out, intermittent server connections, etc., etc.)

Here is a typical example for setting the mode to fail-fast.
_NFMSFacade.setFaultMode(_NFMSFacade.FAIL_FAST_MODE);
// continue with other operations...

Similarly, the call for setting the mode to retry is just
_NFMSFacade.setFaultMode(_NFMSFacade.RETRY_MODE);

3.6 Uploading

3.6.1 Appending

The various append methods are for the case in which a file possibly already exists in the service
and an application needs to add to the tail of it (appending to the beginning of a file is not
supported currently). The arguments lists are differentiated chiefly by how much one needs or
wants to customize the operation. At its most basic, here is the call to send a file to the service,
creating it if it does not exist and appending it to any current version of the file if it does exist. In
this case the logical name will be my file and the local file is in
c:\documents\junque.txt.
String logicalName = "my file";
java.io.File f = new java.io.File("c:\\documents\\junque.txt");
_NFMSFacade.append(logicalName, f);

This loads the default credential and will retry the operation exactly once. If the application
wishes to supply the credential, there is a method for that as well.

What if the application wants to be sure that the append fails if the logical name is already in
use? This is needed if there is a chance some other application will upload a file with the same
logical name. Appending to such a file would render the result useless. (Remember, that the
model for NFMS is a file system and it is quite possible to have two users append unrelated files

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 6

to the same location with similarly unwanted results). In this case, the correct call would simply
be

1_NFMSFacade.appendNew(logicalName, f);

There is as well an overloaded method that permits passing the credential, if needed.

Finally, what if the client wishes to version the file? In this case, there is (possibly) a file already
in NFMS and the application would like to append something to it, so that the current version is
retained as the old version, and the new, appended file becomes the new current version (with the
version number appropriately incremented). The correct method then is just
_NFMSFacade.appendNewVersion(logicalName, f, cred);

where cred contains a credential. At this writing, the client must pass a credential, but to have it
use the default, just use
_NFMSFacade.appendNewVersion(logicalName, f, _NFMSFacade.getCredential());

3.6.2 New files

In the case that an application needs to send a file to the service, the simplest call is, assuming
that logicalName and f are as in the previous section
_NFMSFacade.put(logicalName, f);

This will upload the file, f, giving it the logicalName stated. If there is a file already in the
service with the given logicalName, this will replace it silently, i.e., without notice. Again,
this is much like any other file system, where copying a file will overwrite a previous, like-
named file. There are several overloaded methods to allow for customization. The developer
should, however, be aware that all of these eventually just call the method whose signature is
_NFMSFacade.put(String, File, UploadOptions, GSSCredentials);

If an application needs to ensure that no existing file is overwritten, the appropriate method is
_NFMSFacade.putNew(logicalName, f);

Finally, if an application needs to replace a file completely, but wishes to retain the old file as a
version, then
_NFMSFacade.putNewVersion(logicalName, f, cred);

where cred refers to a credential, is required. The application can use the default credential by
invoking
_NFMSFacade.putNewVersion(logicalName, f, _NFMSFacade.getCredential());

3.6.3 Comment on versioning

Versions of files may be created, but there is currently no easy to recover a previous version of a
versioned file. All download methods will retrieve the current version. This will be rectified in a
future release of NFMS.

3.7 Downloading

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 7

To download a file, an application need to use one of the get methods. As with the other groups
of methods, these all eventually pass off the call to a single method, whose signature in this case
is
get(String, File, DownloadOptions, GSSCredential);

and the various versions just supply defaults as needed. The simplest usage would be as follows,
where a client needs to retrieve the file named My experimental data from the service and place
into a local file named c:\documents\my-data.txt. Such a call (minus the try ...
catch block) would look like this
String logicalName = "My experimental data";
File f = new File("c:\\documents\\my-data.txt");
_NFMSFacade.get(logicalName, f);

3.8 Getting and updating information about a file

NFMS keeps track of certain fixed metadata about a file, such as the size in bytes, the date it was
created and other items. These are stored in an object of type
org.nees.nfms.gen.FileInfo. We call these file information objects. There is another
type of object that can be stored as well and while this is not managed by NFMS, it is important
in its own right for the repository and data browsers. A file reference object is just a reference to
the logical name. Therefore these are objects of type org.nees.md.Reference. There are methods
in NFMSFacade for working with these, but not in NFMS, since these are application-centered
(as opposed to file-centered).

NFMSFacade allows a client to get the file information object. Only logical name is required:
String logicalName = "whatever you called it...";
FileInfo = _NFMSFacade.getFileInfo(logiclaName);
// now you can access information about the file.

Note that there is no way in this release to update the title through NFMSFacade, so a client
must talk to NFMS directly for this.

File reference objects can be created them as follows (note that since these are just references
and the file must be entered into the repository by uploading it: NFMSFacade is perfectly happy
to create a reference for something that does not exist.)
String logicalName="17.08.2003 16:42:23 shake table 4 results";
String title = "latest results";
File f = new File("/home/foo/temp/sh_tbl4.xsl");
_NFMSFacade.put(logicalName, f);
// now create something to show the users.
Reference ref = _NFMSFacade.createFileObject(logicalName, title);
// code to display this.

To look up the file object, issue
Reference ref2 = _NFMSFacade.getFileObject(logicalName);
// whatever....

So in the above case the application uploads a file then creates a file reference object for it. This
is a standard sequence of operations. The title may be arbitrary. This is a different title than the
one in the FileInfo.

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 8

3.9 A complete example.

We'd like to finish this section off with a complete example using NFMSFacade. This will
upload a file then download it again, putting it into a new given file and printing out a few details
from its file information.
import org.nees.nfms.gen.*;
import org.nees.nfms.NFMSFacade;
import java.io.File;
import java.net.URL;

/**
 * A really simple example of using NFMSFacade to upload a file, then
download it again.
 */
public class NFMSFacadeTest{
 public static void main(String[] args){
 if(args.length != 4){
 usage();
 return;
 }
 try{
 // set up the arguments.
 URL nfmsURL = new URL(args[0]);
 File uploadf = new File(args[1]);
 if(!uploadf.exists()){
 System.out.println("Error! The file you specified to"+
 " upload does not exist.");
 usage();
 } //end-if to check upload file
 String logicalName = args[2];
 File downloadf = new File(args[3]);
 if(downloadf.exists()){
 System.out.println("Error! The target file you specified" +
 " for download" +
 " (and over-writing) exists.");
 usage();
 } //end-if to check download file
 // make the facade
 NFMSFacade _NFMSFacade = new NFMSFacade(nfmsURL);
 // upload it
 _NFMSFacade.putNew(logicalName, uploadf);
 // download it to someplace else
 _NFMSFacade.get(logicalName, downloadf);
 // get some information
 FileInfo fileInfo = _NFMSFacade.getFileInfo(logicalName);
 // print a short report about the file.
 System.out.println("Metadata about " + uploadf);
 System.out.println(" logicalName: " + fileInfo.getLogicalName());
 System.out.println(" title: " + fileInfo.getTitle());
 System.out.println(" creation date: " + fileInfo.getCreationDate());
 System.out.println(" size: " + fileInfo.getSize());
 }catch(Exception oops){
 oops.printStackTrace();
 usage();
 } //end catch block
 } // end method main(String[])

 public static void usage(){
 System.out.println("Usage: This will upload a file from" +
 " uploadff to an NFMS server"+
 " using the logicalName.");
 System.out.println(" It will then download it again" +

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 9

 " to the file downloadf and print"+
 " some of the information about the file.");
 System.out.println("NFMSFacadeTest nfmsURL uploadf" +
 " logicalName downloadf);
 } //end method usage()
} //end NFMSFacadeTest class

4 Doing tasks directly

4.1 How is uploading supposed to work?

NFMS runs over a web service, so no active continuous connection exists. Every time a request
comes to the server, its state is stored internally until the next request comes through. The
transfer token (see definition in the glossary) is used to tell the server the transaction whose state
is to be recovered. Here are the steps for uploading a file.

• The application creates an instance of NFMS

• The application creates an upload object, then the application sends a request using the
requestUpload call. This includes the desired logical name for the file, as well as
various options (most importantly, the protocol).

• The server responds with a TransferReturnBean, containing the transfer token and
a URI to the staging area.

• The application sends the file to the given URI using whatever mechanism it has.

• The application notifies the service using the uploadComplete call. This includes the
transfer token.

• The server copies the file from the staging area to the permanent storage location and
removes the file from the staging area.

Details for each of these tasks follow, including code snippets. We assume the service reference
in a variable called _NFMS.

4.2 How do I connect to the server?

This is done using a couple of helper classes. The complete procedure, which can almost be used
as is, reads:
import org.nees.nfms.gen.*;
import java.net.URL;
FileManagementService _NFMS;
// Set your URL accordingly:
try{
 URL nfmsURL =
 new URL("http://neespop.ncsa.uiuc.edu:8080/services/axis/nfms");
 FileManagementServiceService service =
 new FileManagementServiceServiceLocator();
 _NFMS = service.getnfms(nfmsURL);
 // good to go...
}catch(Exception oops){

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 10

 oops.printStackTrace(); // or whatever
}

A client is ready to start making calls to NFMS. In what follows we will leave out the obligatory
try ... catch blocks.

4.3 How do I request a transfer?

We will show how to request an upload, since requesting a download is all but identical. We
assume that you have a connection to the server in the _NFMS variable.

FileManagementService _NFMS;
// set up a connection to NFMS.
UploadOptions uOptions = new UploadOptions();
uOptions.setProtocol(NFMSConstants. PROTOCOL_GRIDFTP); //set the protocol
uOptions.setNewFile(true); // tells server this is a new file
TransferReturnBean trb = _NFMS.requestUpload("my file", uOptions);

Now NFMS is awaiting the file.

4.4 How do I do a grid ftp transfer to NFMS?

If a client must do this directly, it should use the class
org.nees.util.grid.GridFTPFacade. This presupposes that all the client needs to do
is the actual transfer, rather than have the NFMSFacade class create all of the options and do it.
The only caveat is that GridFTPFacade assumes that the application is passing it remote and
local file names, rather than a URL and the client must therefore parse the URL into tokens to
use this class. See the Javadoc for this class for details, since a full accounting of its usage would
exceed the scope of this user guide.

4.5 How do I stop a transfer?

Invoke the abortXXX method for downloads or uploads. Example code to abort an upload.
 // ... setup is as above to request the upload
 TransferReturnBean trb = _NFMS.requestUpload("my file", uOptions);
 // oops. let's stop this
 _NFMS.abortUpload(trb.getTransferToken());

Subsequent attempts to contact the server using this transfer token will throw an exception.

4.6 Tell me about file names.

You are probably wondering why there are three, the title and the logical and physical names.
The physical name is designed for server use only. These can actually be viewed by retrieving a
FileInfo object, hence we will mention it here. The logical name is the handle a client can use
to make file recovery easier. The title is needed for things like user interface displays. Here are
some examples

Physical name: file:///nees/nfms/repoHome/4798734567.38976

Logical name: c:/documents/experiments/data/st-1-090403.xsl

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 11

Title: Shake table 1 data for Sept. 4, 2003 (Excel)

4.7 What protocols do you support?

In the current release, the only protocol supported is grid ftp. Others such as http and plain ftp are
planned, but did not make it into this release.

4.8 What do you mean that I shouldn't version all the data from my experiment?

The question is really if a user needs versions of everything. NFMS will cheerily store all
versions, but remember that while the total capacity is in theory unlimited, only more recently
used files are in the active storage area, the rest being put in long term storage. It is therefore
quite possible for a single user to version huge files and slow the system down. If a user needs
(note operative word) to keep versions of everything, this is fine. All we are saying is that this
should not be simply turned on without being aware of the possible ramifications. In particular,
NFMS is not intended to be a backup system.

4.9 How do I disconnect from the server?

Since there is not a continuous connection, i.e., every transaction has its state preserved on the
server, then stored. If you are not actively making a request to the server, you are not connected.
There is no cleanup or shutdown you need to do.

5 Glossary

download This is a transfer of (a) file(s) from the server.

logical name This is a client-given string to identify the file. In the future the application simply
refers to this string and the server finds the file. This cannot be changed. (See title, below)

physical name This is a server-generated unique identifier for the file. Applications
normally never interact with this. This cannot be changed.

staging area This is a location that is accessible via a given protocol to both the server and the
application. Files are copied to or from this area as dictated by the protocol. E.g. for ftp transfers,
the user's home directory is used. If the server is receiving the file, it is then copied to it
permanent location.

title A user-given string. This is provided so that graphical application have a more easily
human readable form. This can be changed at any time. Its initial default value is the same as the
logical name.

transfer Sending files to the server or getting them from the server.

transfer token A unique string identifying a transaction.

upload This is a transfer of (a) file(s) to the server.

Futrelle/Gaynor www.neesgrid.org 10/7/2003

NFMS User Guide 12

Futrelle/Gaynor www.neesgrid.org 10/7/2003

version A number, starting at 0, that tracks revisions. Subsequent versions have their number
incremented automatically.

6 Final thoughts

Be sure to get hold of the reference manual if you are writing applications that invoke NFMS.

Also, there is at this point no mechanism for retrieving a specific version of a file. This will be
addressed in a later revision of NFMS.

	Summary
	Introduction to the NFMS
	Prerequisites for writing an NFMS application

	The easy way: using NFMSFacade
	Introduction.
	Creating an NFMSFacade instance
	Getting the right credentials
	Setting the transfer mode.
	Retrying operations
	Uploading
	Appending
	New files
	Comment on versioning

	Downloading
	Getting and updating information about a file
	A complete example.

	Doing tasks directly
	How is uploading supposed to work?
	How do I connect to the server?
	How do I request a transfer?
	How do I do a grid ftp transfer to NFMS?
	How do I stop a transfer?
	Tell me about file names.
	What protocols do you support?
	What do you mean that I shouldn't version all the data from my experiment?
	How do I disconnect from the server?

	Glossary
	Final thoughts

