

Technical Report NEESgrid-2003-16
www.neesgrid.org

(Whitepaper Version: 0.1
Last modified September 10, 2003)

The NTCP Control Plugin
DRAFT

Laura Pearlman1, Mike D’Arcy,1, Pawel Plaszczak2, Carl Kesselman1

1USC Information Sciences Institute, Marina del Rey, CA
2Argonne National Laboratory, Argonne, IL

Feedback on this document should be directed to laura@isi.edu

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

mailto:laura@isi.edu

The NTCP Control Plugin DRAFT 2

1 Summary ... 3
2 Introduction... 3
3 Control Plugin Interface Definition (API) .. 3

3.1 Methods defined in the Control Plugin Interface.. 4
3.1.1 The propose method.. 4
3.1.2 The execute method .. 4
3.1.3 The cancel method .. 4
3.1.4 The getControlPoint method... 4
3.1.5 The setParameter method.. 5
3.1.6 The getParameter method ... 5
3.1.7 The openSession method .. 5
3.1.8 The closeSession method.. 5

3.2 Types Used by the Control Plugin Interface... 6
3.2.1 ControlPointType.. 6
3.2.2 ControlPointGeomParameterType.. 7
3.2.3 ControlPluginTransactionHandle ... 7
3.2.4 ParameterType .. 8

4 Control Plugin Use Cases ... 8
4.1 A direct hardware control server... 8
4.2 A Remote Hardware Control Server... 9
4.3 A Proxy Server.. 9
4.4 A Computational Simulation .. 10
4.5 An NTCP Gateway to a Simulation-Building Tool.. 10
4.6 Gateway to a Different Programming Language .. 11

Acknowledgments... 11

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 3

1 Summary
The NEESgrid Teleoperations Control Protocol (NTCP)1 is used to perform remote
control of physical experiments or simulations. An NTCP control plugin is a java class
that implements the interface described in this document to communicate with a control
system (or simulated control system). This document describes the current NCSA
implementation of the NTCP control plugin, including methods defined in the NTCP
control plugin interface, object types passed in as arguments to the methods in the control
plugin interface, and example servers that could be implemented using this plugin
architecture.

2 Introduction
The NEESgrid Teleoperations Control Protocol (NTCP)2 is used to perform remote
control of physical experiments or simulations. An NTCP control plugin is a java class
that implements the interface described in this document to communicate with a control
system (or simulated control system). In our NTCP implementation, the NTCP server is
configured to use a control plugin; when the server receives a request, it performs some
“generic” NTCP operations (such as validating the request and updating transaction state)
and then makes calls into the control plugin to carry out the request.

Figure 1: The NTCP server, control plugin, and backend control system.

NTCP plugins can be written to cause an NTCP server to act as:

• A server that controls hardware directly attached to the local system, or
• A server that controls hardware via some (non-NTCP) network protocol, or
• A proxy server that forwards requests to other NTCP servers, after applying

policy and performing control point name mapping, or
• A computational simulation that accepts requests (and sends replies) via the

NTCP protocol, or
• A gateway into a simulation development framework (such as Matlab).

These use cases are described later in this document.

3 Control Plugin Interface Definition (API)
The control plugin is a Java interface includes a method corresponding to each NTCP
protocol request. Three complex types are defined and appear as parameters to these
methods: ControlPluginTransactionHandle, which provides an interface to query the
state of, and set results for, a transaction; ControlPointType, which is used to represent
the state of a control point; and ParameterType, which is used to represent an experiment
parameter; each method throws a ControlPluginException in case of error.

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 4

3.1 Methods defined in the Control Plugin Interface
The following methods are defined in the NTCP Control Plugin interface and must be
implemented by the authors of a control plugin.

3.1.1 The propose method

public boolean propose(ControlPluginTransactionHandle transaction)
throws ControlPluginException

When the NTCP server receives a propose request, it validates the request, creates a new
object to represent the proposed transaction and calls the plugin’s propose method. The
propose method should do any implementation-specific validation (such as verifying that
all the control points that appear in the request actually exist, or that the control point
parameters specified in the transaction request do not exceed any site-mandated
maximum values). This method should return true if all site-specific conditions for
accepting a proposed transaction are met, and false otherwise.

3.1.2 The execute method
public void execute(ControlPluginTransactionHandle transaction)

throws ControlPluginException

When the NTCP server receives a request to execute a transaction, it validates the
request, marks the transaction as executing, and calls the plugin’s execute method,
passing in the transaction’s state.

The execute method should then begin to execute the transaction (asynchronously; for
example, by starting a new thread for the execution) and return. If the execution
completes successfully, the thread that is handling the execution should call the
transaction’s setResultingControlPoints method to set the transaction results; otherwise, it
should call the transaction’s markTerminated method to mark the execution as terminated
without setting any transaction results.

3.1.3 The cancel method
public void cancel(ControlPluginTransactionHandle transaction)
 throws ControlPluginException

When the NTCP server receives a request to cancel a transaction that is currently in the
executing state, and the request’s interruptExecutingTransaction flag is set, the server
will call the plugin’s cancel method to attempt to cancel the running transaction. If
cancellation is not possible, the cancel method should throw a ControlPluginException.

3.1.4 The getControlPoint method
public java.util.Vector getControlPoint(java.util.Vector names)

throws ControlPluginException

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 5

When the NTCP server receives a getControlPoint request, it calls the control plugin’s
getControlPoint method to query the actual values associated with that control point.
The names argument is a Vector of control point names (of type String); the
getControlPoint method should return a Vector of ControlPointType objects, each of
which contains the state of one of the requested control points.

3.1.5 The setParameter method
public void setParameter(java.util.Vector parameters)
 throws ControlPluginException

When the NTCP server receives a setParameter request, it caches the value of the
parameter in the request and then calls the control plugin’s setParameter method. The
plugin may take any appropriate action – for example, it may forward the parameter on to
a backend system, or throw an exception if the parameter name is recognized but the
value is unexpected – or it may simply return without taking any action. The parameters
argument is a Vector that contains a single ParameterType object containing the name
and value of the parameter being set.

3.1.6 The getParameter method
public java.util.Vector getParameter(java.util.Vector names)
 throws ControlPluginException

When the NTCP server receives a getParameter request, it calls the control plugin’s
getParameter method to find the values of any requested parameters that are maintained
by the plugin. The names argument is a Vector of parameter names, where each
parameter name is a String. The control plugin should return a Vector of ParameterType
objects, each of which contains a parameter name and value, or null if none of the
requested parameters are known to the plugin. Note: if any of the requested parameters
remain unresolved (that is, if there are any requested parameters that do not appear in the
Vector returned by the call to the plugin’s getParameter method), then the server will
look in its own cache for the values of those parameters.

3.1.7 The openSession method
public void openSession(java.util.Vector parameters)
 throws ControlPluginException

When the NTCP server receives an openSession request, it calls the control plugin’s
openSession method, passing in a Vector of ParameterType objects containing the names
and values of parameters for the new session. The openSession method may take any
appropriate action (for example, it may initialize and pass parameters to a backend
simulation).

3.1.8 The closeSession method

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 6

public void closeSession() throws ControlPluginException

When the NTCP server receives a closeSession request, it calls the control plugin’s
closeSession method, which may take any appropriate action.

3.2 Types Used by the Control Plugin Interface
The following object types are passed in as arguments to the methods in the control
plugin interface.

3.2.1 ControlPointType
A ControlPointType object is used to specify values associated with a control point; these
may be values representing an action requested on a control point, or measured/calculated
values representing the state of a control point. A control point can be thought of as
having a name and an array of (zero or more) values, each of which corresponds to (for
example) a force or displacement along some axis. The methods within
ControlPointType are described here.

public ControlPointType()

The ControlPointType constructor takes no arguments and creates an “empty”
ControlPointType object (with no name or control points associated with it).

public void setControlPointName(java.lang.String controlPointName)
public java.lang.String getControlPointName()

The setControlPointName sets the control point’s name; getControlPointName gets the
control point’s name (i.e., returns the name that was set by the most recent call to
setControlPointName). Generally, setControlPointName will be called only once during
the life of a ControlPointType object.

public void setControlPointType(ControlPointGeomParameterType[]
controlPointType)

public void setControlPointType(int i, ControlPointGeomParameterType
value)

The setControlPointType methods set the values associated with the control point
(ControlPointGeomParameterType is described below). The first form sets the entire
array; the second is used to set one value at a time.

public ControlPointGeomParameterType[] getControlPointType()
public ControlPointGeomParameterType getControlPointType(int i)

The getControlPointType methods get the values associated with the control point. The
first form returns the entire array; the second returns the ith entry in the array.

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 7

3.2.2 ControlPointGeomParameterType
The ControlPointGeomParameterType object is used to represent a geometric parameter
(such as “2 cm. displacement along the X axis”). The methods belonging to this type are
described here:

public ControlPointGeomParameterType()

The constructor takes no arguments and creates an “empty”
ControlPointGeomParameterType object.

public void setName(ControlPointParameterNameType name)
public ControlPointParameterNameType getName()

The setName method sets the name of the parameter (that is, the name describing what
kind of parameter this object represents); name should be one of these statically-defined
objects:

ControlPointParameterNameType.force
ControlPointParameterNameType.moment
ControlPointParameterNameType.displacement
ControlPointParameterNameType.rotation

The getName method returns the parameter’s name (the name set by setName).

public void setAxis(GeomAxisType axis)
public GeomAxisType getAxis()

The setAxis method sets the axis associated with this parameter; axis should be one of
these three statically-defined objects:

GeomAxisType.x
GeomAxisType.y
GeomAxisType.z

The getAxis method returns the parameter’s axis (the axis set by setAxis).

public void setValue(java.lang.Float value)
public java.lang.Float getValue()

The setValue method sets the parameter’s value; getValue returns the parameter’s value.

3.2.3 ControlPluginTransactionHandle
A ControlPluginTransacationHandle object is used to represent the state of a transaction.
A control plugin will never create a ControlPluginTransactionHandle object; however,
control plugins do call methods on these objects.

public java.lang.String getName()

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 8

The getName method returns the transaction’s name. Some plugins may never call this
method.

public java.util.Vector getRequestedControlPoints()

The getRequestedControlPoints method returns a Vector of ControlPointType objects
(see above) representing the actions that were requested as part of this transaction.

public void setResultingControlPoints(java.util.Vector controlPoints)
throws java.lang.Exception

The setResultingControlPoints method should be called when a transaction has finished
executing successfully, to notify the server of the results of that transaction. The
controlPoints argument should be a Vector of new ControlPointType objects representing
the measured (or computed) values for that control point at the time that execution
completed.

public void markTerminated() throws java.lang.Exception

The markTerminated method should be called when a transaction fails to execute
successfully, to notify the server that the transaction has terminated unsuccessfully.

3.2.4 ParameterType
A ParameterType object is used to represent an experiment parameter; it can be thought
of as a simple name-value pair. The methods of ParameterType are:

public ParameterType()

The constructor takes no arguments and creates an empty ParameterType object.

public void setName(java.lang.String name)
public java.lang.String getName()

The setName method sets the parameter’s name; getName returns the parameter’s name.

public void setValue(java.lang.String value)
public java.lang.String getValue()

The setValue method sets the parameter’s value; getValue returns the parameter’s value.

4 Control Plugin Use Cases
The following are some example servers that could be implemented using this plugin
architecture.

4.1 A direct hardware control server
In this example, an NTCP server runs directly on a hardware control system.

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 9

Figure 2: A direct hardware control server

In this case, the control plugin makes API calls to control a hardware control system
directly.

Even if a site runs an NTCP server directly on a control system, that site may not wish to
allow remote sites to access it directly (for security reasons, sites may choose to hide their
control servers behind firewalls). In that case, the site may run a proxy server on their
NEES-POP.

4.2 A Remote Hardware Control Server
In this example, the NTCP server runs on a system located on a different host than the
backend control system and communicates with it over the network.

Figure 3: a remote hardware control server

In this case, the control plugin communicates with the backend control system using
some TCP/IP protocol known to the backend system.

4.3 A Proxy Server
In this example, an NTCP server forwards requests to other NTCP servers. It may, in
addition, enforce local policy (using the policy plugin interface, not described in this
document) and translate control point names (e.g., from a distributed-simulation
namespace into individual simulation namespaces).

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 10

Figure 4: A Proxy Server

In this case, the control plugin for the proxy server forwards request to one or more other
NTCP servers; each of these additional servers may be running a different control plugin.

4.4 A Computational Simulation
In this example, a computational simulation communicates using the NTCP protocol.

Figure 5: A computational Simulation communicating via NTCP

Writing individual simulations in this manner involves a certain amount of overhead; we
suspect that researchers will prefer to use NTCP gateways into simulation-building tools.

4.5 An NTCP Gateway to a Simulation-Building Tool
In this example, the NTCP control plugin acts as “glue” connecting the NTCP server to a
simulation-building tool. Experimenters can then use this tool to create simulations that
communicate using NTCP.

Pearlman www.neesgrid.org 9/15/2003

The NTCP Control Plugin DRAFT 11

Pearlman www.neesgrid.org 9/15/2003

Figure 6: A gateway to an application-development framework

In this example, the local policy and control plugins call the APIs of an application
development framework (the details are different for each framework). Experimenters
can then build simulations by implementing their own application logic using that
development framework.

4.6 Gateway to a Different Programming Language
The Control Plugin interfaced defined here is a Java interface. A “gateway” plugin
would support the creation of plugins in a different programming language (such as C).

Figure 7: A language-gateway plugin

In this case, a new plugin API would be defined for a different programming language,
and a “gateway” plugin would be written that made calls into that second API (for
example, the Java execute method would call the equivalent function was equivalent in
the C plugin API). Plugin implementers could then write plugins to the C API rather than
writing Java.

Acknowledgments
We are grateful to Paul Hubbard, Erik Johnson, Benson Shing, and Bill Spencer for
discussions leading to the development of this document.

1L. Pearlman, M. D’Arcy, E. Johnson, P. Plaszczak, C. Kesselman. NEESgrid Teleoperation Control
Protocol. NEESgrid Technical Report 2003-07. September, 2003.
2L. Pearlman, M. D’Arcy, E. Johnson, P. Plaszczak, C. Kesselman. NEESgrid Teleoperation Control
Protocol. NEESgrid Technical Report 2003-07. September, 2003.

	Summary
	Introduction
	Control Plugin Interface Definition (API)
	Methods defined in the Control Plugin Interface
	The propose method
	The execute method
	The cancel method
	The getControlPoint method
	The setParameter method
	The getParameter method
	The openSession method
	The closeSession method

	Types Used by the Control Plugin Interface
	ControlPointType
	ControlPointGeomParameterType
	ControlPluginTransactionHandle
	ParameterType

	Control Plugin Use Cases
	A direct hardware control server
	A Remote Hardware Control Server
	A Proxy Server
	A Computational Simulation
	An NTCP Gateway to a Simulation-Building Tool
	Gateway to a Different Programming Language

	Acknowledgments

