

Technical Report NEESgrid-2003-15

www.neesgrid.org
(Draft Whitepaper Version: 0.5

Last modified: August 5, 2003)

NEESML Reference User Guide

Joe Futrelle1

1 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Feedback on this document should be directed to futrelle@ncsa.uiuc.edu

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

NEESML Reference User Guide Page 2

1 Summary
The NEESML Reference User Guide provides a comprehensive reference manual for the
NEESML language, which is used to populate a NEESgrid metadata repository with
objects and definitions of object types. The User Guide specifies the syntax for
NEESML documents, describes the meaning of every NEESML construct, and explains
how NEESML may be extended. A glossary of NEESML-specific terms is included.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 3

2 Introduction
NEESML is a means for populating a NEESgrid metadata repository with objects and
definitions of object types. It provides a syntax for defining object types and specifying
objects, the values of their properties, and the relationships between objects. The
NEESgrid metadata ingestion tool accepts NEESML files and uses them to populate a
repository with objects and type definitions, communicating with the repository with the
NEESgrid metadata service (NMDS) interface.

NEESML can be used to share type definitions and objects between repositories, and as
an interface between other applications and repositories, because applications can either
be written to read and write NEESML files, or can be augmented with translation utilities
that translate the data formats they can read or write to and/or from NEESML. Finally,
NEESML can be used to archive metadata to files.

2.1 About this document
This document is intended as a comprehensive reference manual for the NEESML
language. It does not explain how to use NEESML to represent real-world objects, but
rather completely specifies the syntax and meaning of every NEESML construct. Using
this document, you will be able to write NEESML documents that conform to the proper
syntax, and will be able to understand syntax errors and other problems with non-
conforming NEESML documents or document fragments.

For a more general introduction to NEESML, please refer to (Futrelle, 2003).

Some NEESML-specific terminology is used in this document. The first time every such
term is used, it is italicized. Definitions of all special terms are given in the glossary in
section 8.

NEESML is a general-purpose metadata description language. Throughout this
document, examples are used that do not directly pertain to earthquake engineering. This
is done merely in the interest of simplicity. All the constructs used in the examples can be
applied to metadata describing earthquake engineering experiments and simulations.

2.2 Some XML “gotchas”
NEESML documents are XML documents. There are some aspects of XML that
constrain the syntax of NEESML documents in important ways:

• XML element and attribute names are case-sensitive. “ID” is not equivalent to
“id”, and “MyTypeName” is not equivalent to “mytypename”.

• Namespaces, if they are used as relation ID’s or the ID’s of types for which
objects are created, must be declared in an enclosing element.

• Some characters are not allowed in element names. It is common practice to only
use alphabetic characters and dashes. Colons and other punctuation are not
allowed.

For details on XML syntax, consult the XML specification (Bray, Paoli, Sperberg-
McQueen & Maler, 2000) or a good XML reference or tutorial.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 4

3 NEESML document syntax
A NEESML document consists of a top-level “neesml” element containing any number
of type definitions and object specifications. The simplest NEESML document, which
defines no types and contains no objects, is:

<neesml>
</neesml>

The examples in the following sections are assumed to be contained within the top-level
“neesml” element of a NEESML document.

4 Defining types
Types are defined in NEESML using the type directive. Every type must have a unique
ID, which is defined with the id directive. You may use any ID that is not already in use
in the repository, except for the ID “type”, because that is the name of the type
directive.

A type may also have a title, defined with the title directive. The title need not be
unique, and simply serves as a convenient and easily readable name for the type. For
example:

<type id=”lvdt” title=”Linear variable displacement transducer”/>

Type definitions are essentially collections of relation definitions.

4.1 Defining relations
Relations are defined using sub-elements of the type directive. Each sub-element that
defines a relation is named after the relation’s ID. For instance, if you want to define a
type with ID “person”with a relation with ID “name”, use the following construct:

<type id=”person”>
 <name/>
</type>

Any number of relations may be defined for a type, but no more than one relation with a
given ID may be defined. Like types, relations can have titles, specified with the title
directive.

A relation definition can specify relation constraints, including relation type and
cardinality.

4.1.1 Specifying relation type
Relation types constrain the kinds of values a relation may hold for each object of a given
type. Relation types can be either primitive types or reference types. Primitive types are
described in Table 1. Reference types constrain the types of objects a relation can contain
a reference to.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 5

Table 1: Primitive types in NEESML

Name Description Examples
string Text “Hello, world.”

“BN# 493-2584x”
int Integer 3

-2
2147483647

long Long integer. Can exceed the
size of an integer.

-5782347562427
9223372036854775807

double Double precision floating
point number.

523425.4568574636
-0.0000000435234

date1 A moment in time,
represented as a date and
time stamp in UTC with 1ms
resolution.

2002-10-27 15:40:32.048
1969-01-12 00:03:48.774

4.1.1.1 Specifying primitive relation types
Primitive relation types are specified with the (relation) type directive. For instance, if
you want to define a type with ID “engine” with a relation with ID
“numberOfCylinders” of type integer, use the following construct:

<type id=”engine”>
 <numberOfCylinders type=”int”/>
</type>

If no primitive type for a relation is defined, it is assumed to be of the default relation
type, string.

4.1.1.2 Specifying reference relation types
Reference relation types are specified with the allow directive. The allow directive
specifies one or more object types that are allowable as values of the relation. For
instance, if you want to define a type with ID “person” with a relation with ID
“dwelling” whose value may be a reference to either an object of type “apartment”
or an object of type “house”, use the following construct:

<type id=”person”>
 <dwelling>
 <allow type=”apartment”/>
 <allow type=”house”/>
 </dwelling>
</type>

NEESML provides a shorter form of the allow directive when only one reference type is
allowed. For instance:

1 NEESML does not currently support dates.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 6

<type id=”apartmentDweller”>
 <dwelling allow=”apartment”/>
</type>

4.1.2 Specifying relation cardinality
Relation cardinality constrains the number of values a relation may hold for each object
of a given type. Relation cardinality is specified with the min and max directives. The
min directive specifies the minimum number of values allowed; it may be either 0 or 1.
The max directive specifies the maximum number of values allowed; it may be any
number greater than or equal to the minimum number of values allowed, or
unbounded, indicating that there is no limit on the number of values allowed.

For example, if you want to define a type with ID “boltedConnection” with a
relation with ID “bolts” that allows one or more references to objects of type “bolt”,
use the following construct:

<type id=”boltedConnection”>
 <bolts allow=”bolt” min=”1” max=”unbounded”/>
</type>

The default values for min and max are 0 and 1. This means zero or one values are
allowed, meaning that the relation is an optional relation, i.e., it is not required to have a
value for each object. To make a relation required, set min to 1:

<type id=”person”>
 <name min=”1”/>
</type>

min and max are not used to set the minimum and maximum values allowed for a
relation of a numeric type such as int, long, or double. NEESML does not currently
provide this capability.

4.1.3 Nested type definitions
NEESML allows types to be defined inside relation definitions, as a convenience. For
instance, suppose you want to define two types, one to represent a person and one to
represent a person’s phone number(s), and then define a relation between those two
types. You can do that without nested type definitions, like this:

<type id=”phoneNumber”>
 <countryCode type=”int”/>
 <areaCode type=”int”/>
 <exchange type=”int” min=”1”/>
 <number type=”int” min=”1”/>
</type>

<type id=”person”>
 <phoneNumber allow=”phoneNumber” max=”unbounded”/>
</type>

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 7

With nested type definitions, you can define the same set of types and the relation like
this:

<type id=”person”>
 <phoneNumber>
 <type id=”phoneNumber” max=”unbounded”>
 <countryCode type=”int”/>
 <areaCode type=”int”/>
 <exchange type=”int” min=”1”/>
 <number type=”int” min=”1”/>
 </type>
 </phoneNumber>
</type>

Relations with nested type definitions cannot include the allow directive, because the
presence of a nested type definition implies that only objects of the type defined in the
nested type definition are allowed as values of the relation whose definition contains the
nested type definition.

4.2 Inheritance
A type can inherit relation definitions from another type by extending another type,
which is then called its parent type. The effect of extending a type is that the parent
type’s relation definitions are implicitly duplicated in (“inherited by”) the child type,
which can then add other relation definitions to the set of inherited relation definitions.
This can be used to specialize types. For instance, if you define a type representing
sensors:

<type id=”sensor”>
 <manufacturer/>
 <model/>
 <serialNumber/>
</type>

You can specialize it by extending it to represent particular kinds of sensors:

<type id=”lvdt” extends=”sensor”>
 <range type=”double”/>
</type>

In this case, the “lvdt” type has four relations defined for it: the three defined by
“sensor” and the additional “range” relation it defines.

A type can extend only one other type. A parent type must be defined before every type
that extends it. A type may extend any type that exists in the repository, not just the ones
defined in the same NEESML file that it is defined in. A type may be extended by any
number of other types. Types that extend other types may themselves be extended. The
effect is to create a hierarchy of types.

If a type (call it “A”) extends a type (“B”), all objects of type A are also considered to be
of type B. If an allow directive allows objects of type B, it also implicitly allows objects
of type A, and any descendants of A in the type hierarchy.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 8

5 Creating objects
To create an object of a given type, use an element with the same name as the ID of the
type. To set relation values for an object, use sub-elements with the same name as
relations defined on that type. For instance, to create an object of type “lvdt”, defined in
the example in section 4.2, use a construct like this:

<lvdt>
 <manufacturer string=”Ltd. Mfg. Co”/>
 <serialNumber string=”X49-AAB-083”/>
 <range double=”34.2”/>
</lvdt>

Sub-elements representing relations specify values using directives named after primitive
types (string, int, long, double, and date), or using reference value constructs
described later in this section.

Like types and relations, objects can have titles, specified with the title directive.

5.1 Setting values for primitive relation types
Use sub-elements to set values for relations with primitive types, as in the example
above. To set more than one value for a relation, use sub-elements named after primitive
types, like this:

<person>
 <name>
 <string>Mark Twain</string>
 <string>Samuel Clemens</string>
 </name>
</person>

The values of a relation with multiple values are unordered; it does not matter what order
you specify them in.

5.2 Setting values for reference relation types
Setting values for reference relation types requires 1) identifying objects, and 2) referring
to them.

5.2.1 Identifying objects
Objects are identified in two very different ways, by ID and by alias. ID’s and aliases are
unique strings. ID’s must be unique in the repository; aliases need only be unique within
a single NEESML document. Object ID’s are specified using the id directive:

<lvdt id=”lvdt1”>
 <serialNumber string=”42-ABX”/>
</lvdt>

Aliases are specified using the alias directive:

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 9

<lvdt alias=”lvdt1”>
 <serialNumber string=”42-ABX”/>
</lvdt>

The purpose of ID’s and aliases is to allow objects to refer to each other. If an object is
created with no ID or alias, then no other objects can refer to it in their relation values.
There are several situations where this may be OK, including nested objects and objects
added to a container, both of which are described in later sections.

5.2.2 Referring to objects
For an object to refer to another object, it must have defined a relation that is of a
reference type. For instance you can define two types to represent cameras and lenses:

<type id=”camera”>
 <lens>
 <type id=”lens”>
 <fStop type=”double”/>
 <focalLength type=”int”/>
 </type>
 </lens>
</type>

To define a lens, and link it to a camera, you can give the lens an object ID and use the
id directive on the camera’s “lens” relation to make the link:

<lens id=”myWideAngle”>
 <fStop double=”1.4”/>
 <focalLength int=”24”/>
</lens>

<camera>
 <lens id=”myWideAngle”/>
</camera>

You can also use an alias:

<lens alias=”myWideAngle”>
 <fStop double=”1.4”/>
 <focalLength int=”24”/>
</lens>

<camera>
 <lens alias=”myWideAngle”/>
</camera>

The difference is that if you use an alias, the two objects must be contained in the same
NEESML file. If you use an ID, the referring object can be in any file, provided that the
referred-to object exists in the repository before it is referred to. In this way, ID’s can be
used to build libraries of objects that can be reused in many NEESML files.

NEESML provides a shorthand construct for inter-object reference. Instead of creating
objects separately, an object can be created inside another object’s specification, like this:

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 10

<camera>
 <lens>
 <lens>
 <fStop double=”1.4”/>
 <focalLength int=”24”/>
 </lens>
 </lens>
</camera>2

This is accomplished by creating an implicit alias for the inner object. If you want to use
the enclosed object elsewhere, you can give it an explicit alias:

<camera>
 <lens>
 <lens alias=”myWideAngle”>
 <fStop double=”1.4”/>
 <focalLength int=”24”/>
 </lens>
 </lens>
</camera>

<type id=”lensCollection”>
 <lenses allow=”lens” max=”unbounded”/>
</type>

<lensCollection>
 <lenses>
 <lens alias=”myWideAngle”/>
 <lens alias=”myZoom”/>
 </lenses>
</lensCollection>

You can also use an ID instead of an alias in this kind of construct.

This construct can be applied for relations with any number of values:

<lensCollection>
 <lenses>
 <lens alias=”myWideAngle”>
 <fStop double=”1.4”/>
 <focalLength int=”24”/>
 </lens>
 <lens alias=”mySlowTele”>
 <fStop double=”4.1”/>
 <focalLength double=”400”/>
 </lens>
 </lenses>
</lensCollection>

2 The reason “lens” is repeated at two levels in this example is because camera defines
a relation with ID “lens”, whose value must be of the type whose ID is also “lens”.
The outer “lens” element identifies the relation, and the inner “lens” element creates
an object of type “lens”.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 11

It can also be applied recursively:

<type id=”person”>
 <name/>
 <siblings allow=”person” max=”unbounded”/>
 <pet allow=”animal”/>
</type>

<type id=”dog” extends=”animal”>
 <answersTo max=”unbounded”/>
</type>

<person>
 <name string=”Joe”/>
 <siblings>
 <person>
 <name string=”Veeves”/>
 <pet>
 <dog>
 <answersTo string=”Samson”/>
 </dog>
 </pet>
 </person>
 </siblings>
</person>

5.3 Updating objects
If an object with the same ID as an object specified in a NEESML file already exists in
the repository, the NEESML ingestion tool will create a new version of the existing
object that matches the object specification in the NEESML file. This can be useful when
you want to modify a set of objects defined in a NEESML file and re-ingest the file.

To make this possible, the objects you want to update must have an ID defined with the
id directive. If instead they have no id, or have an alias but no ID, then a new object is
created and the original object is not updated.

If existing objects had reference relations that linked to the original version of the object,
you must also update those objects so that they link to the new version; otherwise, they
will continue to link to the old version.

5.4 Adding objects to containers
Containers are special metadata objects that can contain other objects. They can be used
to organize objects into groups. Containers can contain other containers, forming a
hierarchy. An object can be in any number of containers. The container type is a special,
pre-defined type in the repository, with the ID “md:container”. If you want to define
you own types of containers, you can extend this type.

An object can be added to a container with the “container” directive. The directive
specifies the ID of the container to which you want to add the object. The NEESML
ingestion tool will add the object to the latest version of the container. If an object with
the same ID as the object being added is already in the container, the object in the
container will be updated rather than re-added.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 12

For instance, if there was a container with the ID “uiuc:mostData”, you could add an
object to it like this:

<io:file title=”MOST data file” container=”uiuc:mostData”>
 <io:pathname string=”/usr/local/data/mostData.txt”/>
</io:file>

6 Namespaces
Any ID (for a type, relation, or object) can consist of a namespace part followed by a
local part, separated by a colon. The namespace part serves to distinguish ID’s with
identical local parts from one another. For instance, the ID’s “uiuc:actuator” and
“uc:actuator” have the same local part, but different namespace parts.

Namespaces that are used in type and relation ID’s must be declared in an enclosing
XML element. It is probably simplest to define them all on the top-level “neesml”
element. NEESML ignores the URL’s used to identify NEESML namespaces, so it does
not matter what they are. A proposed convention is to use a URL consisting of
http://www.nees.org/md/ns/ followed by the namespace part. For example:

<neesml xmlns:io=”http://www.nees.org/md/ns/io”>

 <type id=”io:file”>
 <io:pathname/>
 </type>

 <io:file title=”My data file”>
 <io:pathname string=”/tmp/aFile.txt”/>
 </io:file>

</neesml>

7 NEESML Extensions
NEESML can be extended by developing new constructs along with rules for
transforming them into standard NEESML. The most natural technology for
implementing such rules is XSLT (Clark, 2000). Several example extensions are
provided with the ingestion tool, and are supported by the CHEF-based NEESgrid
repository browser.

7.1 Unit extensions
In scientific domains, numerical values are often associated with units of measure. It is
convenient to be able to convert values between different units of measure. To do this, it
is necessary to represent the units of measure in terms of base units. Because this would
be inconvenient to do for every value, it is convenient to maintain a library of commonly
used units that describes them in terms of algebraic combinations of base units.

The NEESML unit extensions provide a set of types representing units of measure and
their components, as well as a simplified syntax for defining new units of measure and
associating a value with a unit.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 13

7.1.1 Defining units
Each unit definition consists of a set of unit terms. Each unit term relates a base unit with
a factor, exponent, and offset. Units are defined with the defUnit directive, and terms
are defined with the term directive. Allowable base units are m (meter), s (second), kg
(kilogram), A (ampere), K (Kelvin), mol (mole), and cd (candela). For definitions of
these base units see (Taylor, 2001). Base units, factors, exponents, and offsets are
specified with term’s baseUnit, factor, exponent, and offset directives. For
example, meters per second can be defined as follows:

<defUnit id=”mps” title=”meters per second”>
 <term baseUnit=”m”/>
 <term baseUnit=”s” exponent=”-1”/>
</defUnit>

And inches can be defined like this:

<defUnit id=”ft” title=”feet”>
 <term baseUnit=”m” factor=”0.0254”/>
</defUnit>

The id directive specifies the local part of the ID of the object that is created to represent
the unit. All units are defined in the unit namespace; you cannot include a namespace
part in term’s id directive. You also cannot use slashes or carets (^) in the ID. The title
directive can be used to give a descriptive title.

Offsets can be used for units that are offset by a constant from the origin of their base
unit. For instance Fahrenheit can be defined like this:

<defUnit id=”degF” title=”degrees Fahrenheit”>
 <term baseUnit=”K” factor=”1.8” offset=”-459.67”/>
</defUnit>

7.1.2 Combining units
It’s convenient to define units in terms of other derived units, rather than base units. This
can be done with the unit directive of term. For instance, suppose we define G
(gravitational acceleration) like this:

<defUnit id=”G”>
 <term baseUnit=”m” factor=”9.80665”/>
 <term baseUnit=”s” exponent=”-2”/>
</defUnit>

We can now define pounds (of force) like this:

<defUnit id=”lb”>
 <term baseUnit=”kg” factor=”0.43559237”/>
 <term unit=”G”/>
</defUnit>

And kips like this:

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 14

<defUnit id=”kips”>
 <term unit=”lb” factor=”1000”/>
</defUnit>

7.1.3 Using units
To enable units to be used, NEESML unit extensions define a special relation type called
“quant”. For example, suppose you want to represent the maximum amount of force
that can be applied by an actuator:

<type id=”actuator”>
 <maximumForce type=”quant”/>
</type>

In object specifications, NEESML unit extensions provide value and unit directives
for relation values. For example:

<actuator title=”My actuator”>
 <maximumForce value=”324.1” unit=”kips”/>
</actuator>

In order to use a unit in an object specification, a definition for it must be present in the
repository. The NEESML ingestion tool provides an example “unit dictionary” file
containing a set of unit definitions.

7.2 Geometric extensions
The representation of geometry is a very complex problem. NEESML geometry
extensions in their current form provide just a tiny example of how NEESML could begin
to be used to address this problem. They are by no means a comprehensive treatment of
the issue.

NEESML geometry extensions provide two types, geom:point and
geom:orientation, along with simplified syntax to create these types.

geom:point represents a point in 3d Cartesian space in which the components are
related to a unit of measure. NEESML geometry extensions allow points to be
represented using the point directive.

For instance suppose you want to represent the location of a sensor. You can define the
sensor type like this:

<type id=”sensor”>
 <manufacturer/>
 <serialNumber/>
 <location allow=”geom:point”/>
</type>

And you can specify the location of a particular sensor like this:

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide Page 15

<sensor title=”My sensor #24”>
 <manufacturer string=”ltd. mfg. co.”/>
 <serialNumber string=”43-XJDH-HDB”/>
 <location>
 <point x=”43.2” y=”12.3” z=”0” unit=”in”/>
 </location>
</sensor>

Again, the unit you use must have been previously defined. No attempt is made to
describe coordinate systems or transformations. This will obviously be necessary for any
comprehensive treatment of geometry.

Orientation is represented very similarly, except that instead of x, y, and z components,
orientation consists of rx, ry, and rz components, measured in radians. Because the
components are measured in radians, there is no unit of measure associated with them.
For example:

<type id=”beam”>
 <material/>
 <beamOrientation allow=”geom:orientation”/>
</type>

<beam title=”supporting beam”>
 <material string=”grade 50 steel”/>
 <beamOrientation>
 <orientation rx=”0” ry=”0” rz=”3.1415”/>
 </beamOrientation>
</beam>

8 Glossary
Alias – a unique string identifying an object within a NEESML document.

Attribute – an XML attribute (see XML specification)

Cardinality (relation) – the range of number of values allowed for a relation, specified
using the min and max directives.

Constraints (relation) – limits on the type and cardinality of a relation, specified in an
object type definition.

Construct – a specific combination of syntactic elements. NEESML allows certain
constructs and disallows others.

Container – a special kind of metadata object that can contain other objects. All
containers are of type “md:container”.

Directive – an element (e.g., type, allow) or attribute with special meaning to
NEESML.

Element – an XML element (see XML specification)

ID – a unique string identifying an object, type, or relation.

Inheritance – the mechanism by which a type can extend another type, adding additional
relations or modifying relation constraints.

Futrelle www.neesgrid.org 8/05/03

NEESML Reference User Guide

Futrelle www.neesgrid.org 8/05/03

Page 16

Namespace – a prefix on an ID, followed by a colon. The prefix is called the namespace
part and the rest of the ID is called the local part. Namespaces allow ID’s with the same
local part to be distinguished from one another.

Optional relation – a relation with a minimum cardinality of 0.

Primitive relation type – one of a small set of special relation types used to represent
attributes or properties of objects. They are string (text), int (integer), long (large
integer), double (double precision floating point number), date (moment in time), and
reference (link to another object – see reference relation type).

Reference relation type – a relation type representing a link from an object to another
object. The types of other objects that may be linked to can be constrained using the
allow directive in the type definition.

Relation – an attribute or property of an object, identified by a relation ID and having a
value. The relation’s type and cardinality is constrained by constraints specified in the
object’s type definition.

Required relation – a relation with a minimum cardinality of 1.

Type (object) – a kind of metadata object, defined using the type directive, which
specifies the type’s allowable relations and their constraints

Type (relation) – the kind of value allowed for a relation, which is either a primitive
relation type or a set of object types, defined by the allow directive.

Value (relation) – the value, either of a primitive or reference type, of a relation for a
given object.

9 References
Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E. (Ed.). (2000). Extensible
markup language (xml) 1.0 (second edition) [On-line]. Available at:
http://www.w3.org/TR/REC-xml.

Clark, J. (Ed.). (2000). Xsl transformations (xslt) version 1.0 [On-line]. Available at:
http://www.w3.org/TR/xslt.

Futrelle, J. (Ed.). (2003). Overview of neesml whitepaper v1.0 [On-line]. Available at:
http://www.neesgrid.org/documents/NEESgrid_TR_2003-12.pdf.

Taylor, B. N. (Ed.). (2001). Guide for the use of the international system of units (si)
[On-line]. Available at: http://physics.nist.gov/Pubs/SP811/contents.html.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xslt
http://www.neesgrid.org/documents/NEESgrid_TR_2003-12.pdf
http://physics.nist.gov/Pubs/SP811/contents.html

	Summary
	Introduction
	About this document
	Some XML “gotchas”

	NEESML document syntax
	Defining types
	Defining relations
	Specifying relation type
	Specifying primitive relation types
	Specifying reference relation types

	Specifying relation cardinality
	Nested type definitions

	Inheritance

	Creating objects
	Setting values for primitive relation types
	Setting values for reference relation types
	Identifying objects
	Referring to objects

	Updating objects
	Adding objects to containers

	Namespaces
	NEESML Extensions
	Unit extensions
	Defining units
	Combining units
	Using units

	Geometric extensions

	Glossary
	References

