
Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

Technical Report NEESgrid-2003-11
www.neesgrid.org

(Draft Whitepaper Version: 1.0)
Last modified: June 3, 2003)

Preliminary Performance Analysis of the NEES
Metadata Service (NMDS)

Joe Futrelle1

1 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Technical Report NEESgrid-2003-11 www.neesgrid.org

Feedback on this document should be directed to futrelle@ncsa.uiuc.edu

1 Summary
The NEES Metadata Service (NMDS) provides applications with the ability to create,
manage, link, and discover metadata objects in the NEES repository. This study
investigates the performance of the current development version of the NEES repository
implementation and discusses how the results impact how the repository implementation
should be used and further developed.

The performance of the NMDS appears from preliminary analysis to be determined
largely by the indexing performance of the underlying database implementation. The
study shows that the current NMDS implementation scales to order 107 objects. Object
creation and update performance is better than O (lg n), and retrieval performance is
almost O (1). Latencies for most operations are within the 10ms range. This means that
evaluating the scalability of the repository for many more orders of magnitude is
impractical.

Technical Report NEESgrid-2003-11 www.neesgrid.org

2 Overview
The NEES Metadata Service (NMDS) provides applications with the ability to create,
manage, link, and discover metadata objects in the NEES repository. Client applications
access the repository through an API that is made available to them through the web
services framework and in future releases through the OGSI secure web services
framework. The NEES repository is designed to scale to large numbers of objects and
clients. This study investigates the performance of the current development version of the
NEES repository implementation and discusses how the results impact how the
repository implementation should be used and further developed.

3 Test environment
The NEES repository implementation was tested on the NEES central repository server at
NCSA. The server is a 4-processor 500Mhz Dell 6250 server with a 256GB fiber channel
disk and GigE networking, running Red Hat Linux 7.2 (kernel version 2.4.9-31smp).
Backend storage for the test repository implementation was provided by MySQL. The
repository server also provides NFS access to NCSA’s mass storage system, but for
performance reasons this is used for archiving of files, not metadata objects. Since
metadata objects are stored in the database backend and are relatively small, this does not
place practical limits on the number of metadata objects in the repository, since
infrequently used objects can be written to files and archived in mass storage.

The MySQL Connector JDBC driver was used to access the backend database. The driver
allows remote clients to access a MySQL service over a network. For this study, MySQL
was installed locally on the machine running the tests. Likewise, the NMDS client API
allows remote clients to access the metadata repository using a web services protocol.
Because of the high latency introduced by the web services layer (which will be
investigated in a later study), the local version of the API was used instead. This local
version is used in the current implementation when XML files in the NEES metadata
schema description and object interchange format (“NEESML”1) are parsed and used to
initialize the repository. In future releases, the repository will accept files in this format
and will translate them into calls in the local version of the NMDS API.

The NMDS client implementation includes in-memory caching which can prevent
unnecessary calls to the NMDS service and the database. For the purposes of these tests,
non-cacheable “worst-case” access patterns were used. Later studies will examine more
typical cases, which will likely exhibit significant performance gains due to caching, and
will investigate the performance impact of various caching strategies.

Initial tests indicate that performance of the repository is affected greatly by the
performance of the indexes on the backend database. Without indexing, performance was
poor, scaling roughly linearly as objects were added or updated. When appropriate
indexes were added, performance increased substantially.

1 The NEESML format will be described in a future whitepaper.

Technical Report NEESgrid-2003-11 www.neesgrid.org

4 The tests
Several aspects of repository performance were tested. First, several different operations
were tested, including creating objects, updating objects, and retrieving objects. Second, a
number of scaling aspects were investigated, including performing operations on large
numbers of objects and having large numbers of clients access the repository
simultaneously.

4.1 Creating objects
Creating a metadata object involves two low-level operations: looking up the object
representing the new object’s type; and, selectively copying that object. In the test, 107

objects were created, all of the same type. Copying objects performs differently
depending on the number of database rows used to represent the object; for the purposes
of this test, a medium-sized object was used. The object representing the type was
allowed to be cached, since in a typical application creating large numbers of objects, the
number of types will be small and invariant even as the number of objects grows.

Performance was slightly better than O (lg n). The average number of objects created per
second was 99.7. Figure 1 shows the test results.

Figure 1: Object creation performance for 107 objects

Object create performance

80

90

100

110

120

130

140

10,000 100,000 1,000,000 10,000,000

Number of objects

O
b

je
ct

s
cr

e
a
te

d
 p

e
r

se
co

n
d

Technical Report NEESgrid-2003-11 www.neesgrid.org

4.2 Updating objects
Since metadata objects are immutable, updating them involves creating new versions of
them. This is done by translating in-memory representations of the objects into a series of
SQL statements. Unlike object creation, updating objects requires concurrency control,
since a client updating an object cannot prevent other clients from obtaining a reference
to the object before all the statements have been executed. The metadata service therefore
only allows one update to be executed at a time. This means the per-client update time
increases at order O (n) in the worst case, in which all clients attempt to continuously
update objects and are forced to wait in line. Figure 2 shows the performance impact of
the growth in the number of new object versions, up to 105. Performance is comparable
to, but somewhat slower than, object creation.

Object update performance

100

105

110

115

120

125

130

135

140

1,000 10,000 100,000

Number of objects

O
b

je
ct

s
u

p
d

a
te

d
 p

e
r

se
co

n
d

Figure 2: Object update performance for 105 object versions

The total number of objects updated per second also decreases in the worst case as clients
are added. This is likely because of a combination of the growth in the number of new
object versions and overhead incurred by thread scheduling in the Java virtual machine.
Figure 3 shows the total number of objects updated per second for increasing numbers of
clients. In the test, each client created an object and then attempted to continuously
update it. The total number of objects created per second was estimated by multiplying
the per-client update rate for the nth client by n, but this very likely underestimates
update performance by failing to compensate for the effect shown in Figure 2.

Technical Report NEESgrid-2003-11 www.neesgrid.org

Concurrent update performance
(worst-case load)

60

70

80

90

100

110

120

130

140

150

1 10 100
Number of clients

O
b

je
ct

s
u

p
d

a
te

d
 p

e
r

se
co

n
d

Figure 3: Concurrent update performance for 100 clients

Ad hoc tests indicate that update performance is significantly better under typical, better-
than-worst-case access patterns, in which clients update groups of objects in bursts rather
than continuously. This will be rigorously investigated in a later study.

4.3 Retrieving objects
Retrieving an object involves performing an SQL select statement on the object’s ID and
version number. For the test, medium-sized objects were created and retrieved, and only
the retrieval time was measured. Retrieving recently created objects may have caused the
test to overestimate performance because of optimizations internal to MySQL, but this
possibility was not investigated.

Retrieval performs in almost constant time, and is roughly twice as fast as object creation.
The sawtooth-shaped distribution of retrieval rates with a period of roughly 7.5¥105

objects likely reflects MySQL’s indexing performance. Since objects are immutable, no
concurrency control is required for object retrieval; hence, no investigation of concurrent
retrieval performance was done.

Technical Report NEESgrid-2003-11 www.neesgrid.org

Retrieval performance

175

185

195

205

215

225

235

245

0 2,500,000 5,000,000 7,500,000 10,000,000

Number of objects

O
b

je
ct

s
re

tr
ie

v
e
d

 p
e
r

se
co

n
d

Figure 4: Retrieval performance for 107 objects

5 Discussion
The performance of the NMDS appears from preliminary analysis to be determined
largely by the indexing performance of the underlying database implementation. When
appropriate indexing commands are added to the MySQL configuration provided with the
Alpha 1.1 release, the NMDS scales to order 107 objects. Object creation and update
performance is better than O (lg n), and retrieval performance is almost O (1). Latencies
for most operations are within the 10ms range. In practical terms, this means that an
operation on order 10k objects takes at least order 10k-7 days. Therefore, evaluating the
scalability of the repository for many more orders of magnitude is impractical.

A major scaling issue is concurrency control. In the current implementation, it is assumed
that all clients will access the repository through a single Java virtual machine, and
concurrency control is managed using Java’s threads-based system of locks and monitors.
From this preliminary study, it appears that this strategy has several problems. First, the
locking strategy is conservative, forcing all clients to wait whenever any object is being
updated, even though some of them may be waiting to update a different object. Second,
managing threads incurs overhead in the Java VM, which may significantly degrade per-
client performance. And finally, where queuing cannot be avoided, clients may block for
impractical amounts of time during updates. There are several possible changes that
would address these issues. Most importantly, RDBMS-level transactions could be used
to make operations requiring multiple SQL statements atomic. This would eliminate most

Technical Report NEESgrid-2003-11 www.neesgrid.org

of the need for thread-based concurrency control. Also, non-blocking batch processing
could be introduced so that clients needing to perform many operations could submit
groups of operations and be notified asynchronously of successful or unsuccessful
completion.

6 Topics for future study
Several areas require further study. The most natural extension of the current study is to
duplicate the tests with orders of magnitude more objects, but this cannot be practically
accomplished for more than order 108 objects because the tests would take too long to
run. Another natural extension is to vary the operating environment used for the study,
including the Java VM parameters, the bus architecture used for secondary storage, and
the number of processors used.

The most important area of further investigation is to attempt to separately measure
worst-case, average-case, and best-case access patterns for object creation, updating, and
retrieval. This requires developing algorithms that simulate a variety of access patterns
and measuring the performance impact of each one.

Another important area of study required is the effect of access methods and caching on
performance. The performance impact of the web services layer, which is likely to be
significant, needs to be studied in order to develop effective techniques to mitigate it
(these include various forms of batch processing). Caching strategies need to be
investigated to determine which strategies are optimal for various operating
environments.

Finally, the use of database backends other than MySQL needs to be investigated. The
NMDS implementation currently supports Oracle and Sybase in addition to MySQL.

7 Conclusion
This study provides a preliminary performance analysis of the NEES metadata service
implementation. The results of this study are the beginning of the establishment of a set
of baseline performance measurements against which future refinements of the NMDS
implementation, or deployments of the NMDS in different operating environments, can
be assessed.

