
Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under

Award Number CMS-0117853.

Technical Report NEESgrid-2003-08
www.neesgrid.org

(Whitepaper Version: 0.3
Last modified April 29, 2003)

A Plugin Interface for an NTCP Server

Laura Pearlman1, Nabil Deeb1, Carl Kesselman1

1USC Information Sciences Institute, Marina del Rey, CA

Feedback on this document should be directed to laura@isi.edu

A Plugin Interface for an NTCP Server

Laura Pearlman Page 2 5/6/2003

Introduction... 2
1 Plugins... 3

1.1 Local Policy Plugin Details .. 3
1.2 Control Plugin Details... 4

2 Examples... 6
2.1 A direct hardware control server... 6
2.2 A Proxy Server.. 7
2.3 A Computational Simulation .. 8
2.4 An NTCP Gateway to a Simulation-Building Tool.. 8
2.5 Plugins Planned for July, 2003 ... 10

Acknowledgments... 11

Introduction
This document describes the overall software design of an NTCP server (as described in
[the ntcp protocol document]), using plugins to implement local policy and to perform
control operations. The goal is to create a generic NTCP server that, with appropriate
plugins, can be used as:

• A server that controls hardware directly attached to the local system, or
• A proxy server that forwards requests to other NTCP servers, after applying

policy and performing control point name mapping, or
• A computational simulation that accepts requests (and sends replies) via the

NTCP protocol, or
• A gateway into a simulation development framework (such as Matlab).

The NTCP protocol consists of four requests: propose, used to initiate a transaction,
cancel, used to cancel a transaction, execute, used to execute a transaction, and
transaction_status, used to query the status and results of a transaction. Many parts of
this service can be managed generically: enforcing generic policies (such as which users
may send control requests for which resources), maintaining the state tables for
transactions and resources, remembering transaction results and responding to queries,
and mapping control point names to configuration information. However, there is some
functionality server that cannot be implemented generically; we propose implementing
this functionality using two kinds of plugin: a local policy plugin, to enforce local policy
restrictions, and a control plugin, to handle the actual execution transactions.

A Plugin Interface for an NTCP Server

Laura Pearlman Page 3 5/6/2003

1 Plugins

Core NTCP Engine

Local Policy
Plugin

Control Plugin

Control Plugin

Control Plugin

Generic Policy
Enforcement

Transaction
State Machine

Resource
State Machine

Transaction
State Cache

Subscription/
Notification

Control
Dispatcher

To clients

To resources

To resources

To resources

Figure 1: The NTCP server, with plugins.

An NTCP server must be configured to use a single local policy plugin; this plugin is
called whenever a request is received, to enforce any local policy that cannot be
expressed using the generic policy mechanism (an example of this kind of policy would
be one that limited the amount of force that could be applied to a control point based on
some computation).
An NTCP server must also be configured to use at least one control plugin. Control
points are mapped to sets of resources; different resources may be mapped to different
control plugins. When a transaction is executed (or an executing transaction is
cancelled), the control plugin(s) associated with the resources involved in that transaction
are called.

1.1 Local Policy Plugin Details
This plugin is called whenever any NTCP request is received and has passed all the
server’s generic authorization tests (if a request fails the generic authorization tests, then
the server sends a failure reply to the client without proceeding further). This plugin is a
java class with a constructor and a method called check_local_authorization.

When the NTCP server starts up, it calls the local policy plugin’s constructor to create a
local policy plugin object. The constructor takes one argument, a string containing
configuration information (this string is parsed only by the plugin, not by the NTCP
server, so the format of this string may be different for different local policy plugins).

Whenever the server receives any NTCP request, it calls the check_local_authorization
method of the local policy plugin object, passing these arguments:

• A data structure representing the request and its arguments,
• A data structure representing the credentials used to authenticate the request, and
• A handle that can be passed to server utility functions to query control point

states. [For July, no such utility functions will be implemented].

This function returns a data structure containing:

A Plugin Interface for an NTCP Server

Laura Pearlman Page 4 5/6/2003

• A “yes or no” answer indicating whether the local policy authorizes the request,
and

• A text string used for logging and for any status message returned to the client.

1.2 Control Plugin Details
A control plugin is a java class that includes a constructor and four methods: initialize,
execute, and cancel.

When the NTCP server starts up, it calls the local policy plugin’s constructor to create a
control plugin object for each plugin configured into the server. The constructor takes
one argument, a string containing configuration information. This string is parsed only
by the plugin, not by the NTCP server, so the format of this string may be different for
different control plugins; for example, one may expect the string to contain xml-encoded
configuration information, while another may expect it to contain the name of a
configuration file.

When the NTCP server receives a propose request for a transaction, it identifies the
control points involved in the request, and the control plugin object associated with each
of those control points. For each involved plugin, the server calls that plugin’s
validate_propose_request method, which takes these arguments:

• For each control point that is both involved in the current transaction and
associated with this plugin, a data structure including the control point name and
per-control-point arguments (that is, a virtual class should be defined for this, and
the argument should be an object in a child of that class). [For July, this will be a
simple structure that allows the specification of one or more of the following 12
quantities: Force, Moment, Displacement, and Rotation along the X, Y, and Z
axes. The units used to express these quantities will be agreed on in advance].

• A handle that can be used to query the server’s state and client authentication
information.

This method will validate the propose request against any policy specific to this plugin
(such as, “the result of applying this function to the parameters specified for control point
X should be less than this value”). Note that more general policies, such as “User X may
make requests involving control point Y”, should be handled by the local policy plugin.

When the NTCP server receives an execute request for a transaction, it identifies the
control points involved in the request, and the control plugin object associated with each
of those control points. For each involved plugin, the server calls that plugin’s
begin_execution method, which takes these arguments:

• For each control point that is both involved in the current transaction and
associated with this plugin, a data structure including the control point name and
per-control-point arguments (the same data structure used by
validate_propose_request).

• A handle that can be used to query the server’s state and client authentication
information.

A Plugin Interface for an NTCP Server

Laura Pearlman Page 5 5/6/2003

The begin_execution method returns:

• The status (“success” – meaning execution has begun, or “failure”, indicating that
the arguments appear invalid), and

• If the status is “success”, a (module-specific) data structure containing arguments
to be passed to the plugin’s execute method.

If the begin_execution request returned successfully, the server will then change the
transaction’s status to executing and call the plugin’s execute method asynchronously,
with three arguments:

• The name of the transaction (to be used by the execute method when reporting
results),

• A queue object (a standard producer-consumer queue, with the execute method
acting as the producer).

• The execution argument that was returned by the begin_execution method.
• A handle that can be used to query the server’s state and client authentication

information.
The execute method will:

• Do the actual work of executing the transaction (e.g., send a signal to a hardware
controller, send a request to a remote server, or perform a computation),

• Create a data object for the results, consisting of the transaction name and
structured results data for each involved control point. [For July, the per-control-
point results data consists of 12 quantities: force, moment, displacement, and
rotation along the three axes],

• Place the data object on the queue, and return.

If the NTCP server receives a cancel request for a transaction in the executing state, and
the cancel requests indicates that the request should be cancelled even if it has begun
executing, it will locate all the control points and control plugins involved in the
transaction. For each plugin involved, the server will call that plugin’s cancel method
with a list of the control points that are involved in the transaction and associated with
that plugin. The cancel method will attempt to cancel the request and return a status
value.

When the NTCP server receives a set_parameters request, it will cache the parameter
name and value and call the set_parameters method of each control plugin, with these
arguments:

• The name of the parameter being set (from the NTCP request)
• A data object representing the parameter values (from the NTCP request)
• A handle that can be used to query the server’s state and client authentication

information.

What the set_parameters method does with this information depends on the
implementation of each plugin; for example, it may save these values as static data
effecting future calculations, or it may ignore them. The set_parameters method returns

A Plugin Interface for an NTCP Server

Laura Pearlman Page 6 5/6/2003

a status – success, unrecognized_parameter, unauthorized, or invalid_parameter;
however, it is permissible for a set_parameters method to simply ignore an unrecognized
parameter and return success in that case. The status from set_parameters will be
returned to the client as the status of the NTCP request.

When the NTCP server receives a get_parameters request for a parameter that is not
cached, it will call the get_parameters method of each installed control plugin, passing
the parameter name as an argument. The get_parameters method will return:

• A status indication: success or notfound
• A data structure containing the value of the parameter, if found.

If a plugin’s get_parameters function returns the status success, then the value from that
method will be returned to the client as part of the NTCP reply. [Open issue: if more
than one installed plugin is keeping track of a named parameter, then the behavior isn’t
fully defined. For July, we will run configurations with only one plugin. For the future,
we may enforce the limitation of only one plugin per server instance, or do something
with parameter namespaces, or return an array of values].

2 Examples
The following are some example servers that could be implemented using this
architecture.

2.1 A direct hardware control server
In this example, an NTCP server runs directly on a hardware control system.

Core NTCP Engine

Local Policy
Plugin

Control Plugin
Generic Policy
Enforcement

Transaction
State Machine

Resource
State Machine

Transaction
State Cache

Subscription/
Notification

Control
Dispatcher

To clients
Signals to

local control
hardware

Figure 2: A direct hardware control server

The control plugin for this server is implemented as follows:

• The initialize function maps {control point, per-control-point-argument-type}
pairs into {hardware slot number, parameters} pairs (e.g., “control point xyz,
force along the X axis”, to “the actuator at hardware slot 3” and additional
parameters).

A Plugin Interface for an NTCP Server

Laura Pearlman Page 7 5/6/2003

• The begin_execution method sanity-checks the results (e.g., it does not rejects
requests that specify both force along the X axis and displacement along the X
axis for the same control point).

• The execute method sends a signal to the appropriate board/slot, waits for results,
and puts those results on the results queue.

• The cancel method either refuses to cancel executing requests, or sends a signal to
the appropriate board/slot.

Even if a site runs an NTCP server directly on a control system, that site may not wish to
allow remote sites to access it directly (for security reasons, sites may choose to hide their
control servers behind firewalls). In that case, the site may run a proxy server on their
NEES-POP.

2.2 A Proxy Server
In this example, an NTCP server forwards requests to other NTCP servers. It may, in
addition, enforce local policy and translate control point names (e.g., from a distributed-
simulation namespace into individual simulation namespaces). When connecting to
backend servers, it may use its own credential (so that all policy is enforced by the proxy
server; the backend servers can be configured to allow only the proxy server to perform
control operations) or credentials delegated by clients.

Core NTCP Engine

Local Policy
Plugin

Control Plugin
Generic Policy
Enforcement

Transaction
State Machine

Resource
State Machine

Transaction
State Cache

Subscription/
Notification

Control
Dispatcher

To clients

NTCP ServerNTCP (“propose”)

NTCP (“execute”
and “cancel”)

Figure 3: A Proxy Server

The local policy plugin for this server is implemented as follows:

• The initialize function creates a mapping of control point names into {remote
server, remote-control-point} pairs.

• The check local authorization request:

o Enforces local policy, and,
o When checking a propose request, it translates the request into requests for

the associated remote NTCP servers, sends the requests to those servers,
and waits for the results. If the result of any of these results is failure, this
function will cancel any requests that had been accepted as part of this
transaction, and return an indication that the request is unauthorized.

A Plugin Interface for an NTCP Server

Laura Pearlman Page 8 5/6/2003

The control plugin is implemented as follows:

• The initialize function maps control point names into {remote server, remote-
control-point} pairs.

• The begin_execution method just returns success.
• The execute method sends execute requests to any remote servers involved in this

transaction, waits for results, translates the control point names in the response,
and puts the results on the results queue.

• The cancel method sends cancel requests to any remote servers involved in the
transaction, then waits for results and puts them on the results queue.

[For July, we plan to implement a proxy server].

2.3 A Computational Simulation
In this example, a computational simulation communicates using the NTCP protocol.

Core NTCP Engine

Local Policy
Plugin

Control Plugin (includes
application logic)

Generic Policy
Enforcement

Transaction
State Machine

Resource
State Machine

Transaction
State Cache

Subscription/
Notification

Control
Dispatcher

To clients

Figure 4: A computational Simulation communicating via NTCP

In this example, the control plugin is implemented as follows: the execute method
performs the computations associated with each transaction, the cancel method either
fails or rolls back any executing computations.

[For July, we do not plan to implement this kind of plugin].

Writing individual simulations in this manner involves a certain amount of overhead; we
suspect that researchers will prefer to use NTCP gateways into simulation-building tools.

2.4 An NTCP Gateway to a Simulation-Building Tool
In this example, the NTCP control plugin acts as “glue” connecting the NTCP server to a
simulation-building tool. Experimenters can then use this tool to create simulations that
communicate using NTCP.

A Plugin Interface for an NTCP Server

Laura Pearlman Page 9 5/6/2003

Core NTCP Engine

Local Policy
Plugin

Control Plugin
Generic Policy
Enforcement

Transaction
State Machine

Resource
State Machine

Transaction
State Cache

Subscription/
Notification

Control
Dispatcher

To clients

Framework
API

Framework
API Application

Logic

Application
Logic

Figure 5: A gateway to an application-development framework

In this example, the local policy and control plugins call the APIs of an application
development framework (the details are different for each framework). Experimenters
can then build simulations by implementing their own application logic using that
development framework.

[For July, we are planning to implement this kind of plugin, for Matlab].

A Plugin Interface for an NTCP Server

Laura Pearlman Page 10 5/6/2003

2.5 Plugins Planned for July, 2003

NTCP Server“proxy”
plugin

“C”
plugin

Shore
Western
plugin

NTCP Server“proxy”
plugin

NTCP Server

“C”
plugin

Matlab
pluginNTCP Server

Shore
Western

API

Matlab
Framework

“C”
plugin

Matlab
pluginNTCP Server

Matlab
Framework

xpc

Control
application

Application
Logic

UIUC Control System

UIUC NEES-POP

U. Colorado Control System

U.Colorado
NEES-POP

Compute Server (where?)

Coordinating
Simulation

Figure 6: Plugins planned for July, 2003

For the July, 2003 experiment, we plan to have the following plugins:

• A “proxy” plugin, as described in Section 2.2, to run on the NEES-POPs at UIUC
and the University of Colorado.

A Plugin Interface for an NTCP Server

Laura Pearlman Page 11 5/6/2003

• A “C gateway control” plugin: a definition of the gateway plugin in the C
language (implemented by having the server use jni calls).

• A “direct hardware control” plugin (as described in Section 2.1) to control Shore
Western controllers at UIUC (using the C gateway control plugin).

• A local policy plugin and control plugin to act as a gateway to Matlab. This will
be used both to implement computational simulations, and as part of the control
mechanism at the University of Colorado. The Colorado control system will
consist of an application using Matlab functions to receive NTCP requests and
xpc to control their control hardware.

Acknowledgments
We are grateful to Paul Hubbard, Erik Johnson, Benson Shing, and Bill Spencer for
discussions leading to the development of this document.

