

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

Technical Report NEESgrid-2003-07
www.neesgrid.org

(Whitepaper Version: 0.3)
Last modified: April 30, 2003)

NEES Teleoperation Control Protocol (NTCP)

Laura Pearlman1, Erik Johnson2, Carl Kesselman1
1USC Information Sciences Institute, Marina del Rey, CA
2University of Southern California, Los Angeles, CA

Feedback on this document should be directed to neesgrid-si@neesgrid.org

NEES Teleoperation Control Protocol

Laura Pearlman Page 2 5/6/2003

1 Design Goals... 2
2 Experiment Framework .. 3

2.1 The Execution/Verification Phase .. 6
3 NTCP Server State.. 6

3.1 Configuration state.. 6
3.2 Experiment Parameters ... 6
3.3 Per-transaction state .. 7
3.4 Per-Resource State .. 7
3.5 Serialization .. 8

4 The Protocol.. 8
4.1 The Propose Request... 9
4.2 The execute request... 9
4.3 The Cancel Request .. 10
4.4 The Set_parameters request .. 10
4.5 Queries .. 11

4.5.1 Transaction_status... 11
4.5.2 Parameter_status ... 11
4.5.3 Control_point_status ... 11

5 Security Considerations .. 12
6 Future Work: Transaction Queueing ... 12
Appendix: Using a Community Scheduler with NTCP... 13
Acknowledgments... 14

1 Design Goals
The purpose of this protocol is to provide for control of simulations by remote
applications, particularly in support of multi-site hybrid simulations.

A hybrid simulation may consist of a mix of computational simulations and physical
simulations (experiments), and there are some cases in which it may be desirable to
replace a physical simulation with a computational one (e.g., during a “dry run”, or in the
event that one site in a multi-site simulation experiences difficulties). For this reason, the
same protocol should support both physical and computational simulations.

Different sites may choose different limitations on what operations are permitted during a
physical simulation (e.g., maximum amounts of force to apply via an actuator), and it’s
generally not possible to “undo” an operation in a physical simulation. For this reason,
the protocol should support negotiation of parameters at each site before any action is
taken.

Communication over the network may be unreliable and may include delays. For this
reason, the protocol should support closed-loop requests – that is, the protocol should
support requests such as “move up 3 cm”, as opposed to requests such as “move up at
10mph”.

NEES Teleoperation Control Protocol

Laura Pearlman Page 3 5/6/2003

The protocol should not rely on the underlying transport to deliver messages reliably or in
the same order in which they were sent (for example, the protocol should allow for
recovery in the event that a TCP connection is dropped); the protocol should provide at-
most-once semantics for its request.

2 Experiment Framework
A simulation design will include of a number of named virtual control points, on which
actions can be specified. A virtual control point corresponds to a node in the simulation
model; in a physical experiment, each control point will correspond to a location (on a
specimen) on which forces can be applied by one more actuators. Within each
computational or physical simulation, the virtual control point names must be unique.
These names represent nodes in the simulation design; the same virtual control point
names are used regardless of whether the actual simulation being run is a computational
simulation or a physical experiment, or where the simulation is being run.

When (or before) a physical or computational simulation is run, a namespace will be
assigned to that experiment instance (in NEESgrid, we expect that this assignment will
eventually be handled via the NEESgrid metadata services). The control point names
used in the NTCP protocol are names within these experiment instance namespaces. [For
the July experiment, at least, we will use the convention that the “name” part of a control
point name is the same as its virtual control point name].

Prior to the beginning of a distributed experiment, administrators at each local site
running physical simulations will configure the NTCP server at that site to “understand”
control point names, perform security-related configuration tasks (such as configuring
who is allowed to send control requests for which experiments), and take any physical
measures necessary for health and safety reasons. [For July, the only levels of
authorization available will be “can send control requests”].

We expect that a distributed simulation will consist of a coordination module, which will
coordinate requests for the distributed simulation as a whole, and one or more named
computational or physical simulations as described above. The coordination module may
itself be a single process or a distributed simulation, possibly utilizing a community
scheduler.

We anticipate that the coordination module will pass through the following phases for
each time-step of the simulation:

NEES Teleoperation Control Protocol

Laura Pearlman Page 4 5/6/2003

Negotiation: calculate
required actions, and
verify that all remote

simulations are willing to
attempt them.

Execution/Verification:
ask the remote

simulations to perform
their actions, and verify

the results.

Figure 1: Simulation phases during a time-step

In the negotiation phase, the coordination module negotiates with each remote site to
determine the set of actions for the current time-step. The coordination module calculates
the desired actions for each control point, and sends proposals to each NTCP server
containing the parameters for the next actions of the control points controlled by that
server. The server may accept the proposal, indicating a willingness to attempt the
requested action, or reject the proposal, indicating an unwillingness to do so. The
negotiation phase is successfully completed when all outstanding proposals have been
accepted; at this point, the execution phase may begin.

In the execution/verification phase, the coordination module sends a request to each
server to perform the actions agreed to during the negotiation phase. The servers attempt
those actions and send status results back to the simulation, which may also gather
additional data (e.g., sensor readings) to verify that the status sent back by each remote
site is correct. When this phase is complete, the coordination module may begin the
negotiation phase for the next time-step.

NEES Teleoperation Control Protocol

Laura Pearlman Page 5 5/6/2003

Coordination Module

Site A (NTCP Server)

1)

2)

3)

Site B (NTCP Server) Site C (NTCP Server)

Propose
action A1 Propose

action B1

Coordination Module

Site A (NTCP Server) Site B (NTCP Server) Site C (NTCP Server)

Accept A1 Reject B1 Accept C1

Coordination Module

Site A (NTCP Server) Site B (NTCP Server) Site C (NTCP Server)

Cancel C1

Propose
action C1

Coordination Module

Site A (NTCP Server)

4)

Site B (NTCP Server) Site C (NTCP Server)

Parameters for
action B2

Parameters for
action C2

Coordination Module

Site A (NTCP Server) Site B (NTCP Server) Site C (NTCP Server)

Accept B2 Accept C2

5)

Figure 2: An example negotiation phase

Figure 2 shows an example negotiation phase. In step 1, the coordination module
performs calculations to determine the desired actions at three remote sites for the current
time-step, and sends the NTCP server at each site a message proposing the desired action
for that site. In step 2, sites A and C each accept their proposals (A1 and C1,
respectively), storing the parameters of the proposed action and replying with a message
indicating their willingness to comply. Site B, however, rejects its proposal.

At this point, the negotiation phase has not completed successfully, and the simulation
must deal with this failure, in some application-specific manner. The simulation might
simply fail, or it might replace Site B with some numeric simulation for the remainder of
the experiment. In this example, however, it calculates a new set of desired actions that

NEES Teleoperation Control Protocol

Laura Pearlman Page 6 5/6/2003

is less demanding on Site B, but requires a change to the action requested of Site C. The
simulation cancels the proposal previously accepted by Site C (step 3), and sends new
proposals (B2 and C2) to sites B and C, respectively (step 4).

In step 5, sites B and C accept their new proposals. At this point, the simulation has an
accepted proposal with each remote site (Site A has accepted A1, Site B has accepted B2,
and site C has accepted C2), and the negotiation phase has completed.

2.1 The Execution/Verification Phase
Once the negotiation phase has completed, the coordination module sends a request to
each remote site to execute that site’s previously agreed-upon action. Each site’s server
attempts the action and reports status back to the coordination module. As the simulation
receives status messages, it may gather additional information to verify that the status
messages are correct.

3 NTCP Server State
The NTCP server maintains three kinds of state information: configuration state,
experiment parameters, per-transaction state, and per-actuator state; this state information
provides some serialization, discussed in section 3.5.

3.1 Configuration state
Configuration state includes the mapping of each control point name (the names that
appear in NTCP protocol requests) to the (implementation-specific) information required
to act on that control point. Configuration state also includes the mapping of each control
point name to a set of control point resources; these are the resources that are involved in
an action on that control point (e.g., in a physical experiment, the resources associated
with a control point name may be a set of physical actuators). These mappings may be
many-to-many: many control points may map to a single set of resources (e.g., a
simulation may use two names for the same physical control point, or two simulations
may share a set of actuators), and a single control point name may map to several sets of
resources (e.g., a simulation may be mirrored within a distributed simulation).

Configuration state also includes policy information, such as maximum allowed request
parameters and authorization information. [For July, the only policy information is who
is allowed to perform control operations].

The management of configuration state is implementation-specific and is not addressed
by the NTCP protocol.

3.2 Experiment Parameters
Closely related to configuration state are experiment parameters: parameters, not
associated with any particular control point, that may effect a simulation. For example,
in a computational simulation, the mass of a component may be an experiment parameter.
Experiment parameters are cached by the NTCP server and are set and queried using the
get_parameters and set_parameters requests.

NEES Teleoperation Control Protocol

Laura Pearlman Page 7 5/6/2003

3.3 Per-transaction state
A transaction can be in one of three possible states: accepted, executing, and terminated.
In the most straightforward case, a client sends a proposal request to the server, which
then accepts the proposal, sending the client an accepted reply and creating a new
transaction in the accepted state. The client then sends the server an execute request for
the transaction, which moves it to the executing state. When the execution completes, the
server changes the transaction state to terminated and sends a reply to the client.

Accepted
Executing

Terminated

Server receives
execute request

Client cancels
transaction

Transaction
times out Client cancels

execution

Execution
completes

Server’s policy
changes

Server receives
and accepts

proposal

Server receives
and rejects
proposal

Figure 3: Transaction state transitions

Other state transitions are possible: timeouts or internal policy changes may move a
transaction from the accepted state to the terminated state, and a cancel request may
move a transaction from the accepted or executing state to the terminated state. An
NTCP server may also receive a proposal and not create a transaction at all, if the
proposal is syntactically incorrect, or if its transaction id is the same as the transaction id
of an existing transaction.

3.4 Per-Resource State
The NTCP server associates reservations with control point resources; a reservation
associates a resolved control point name with a transaction. Control point resource
names were defined in section 3.1).
Reservations are exclusive: a resource may have at most one reservation at a time. A
resource that has no reservations associated with it is said to be available.

NEES Teleoperation Control Protocol

Laura Pearlman Page 8 5/6/2003

Available
Reserved

(for associated
transaction)

Transaction using
this resource
is accepted

Reservation’s
associated transaction

is terminated

Initial control point
resource configuration

Figure 4: Resource state transitions

Resource states and transaction states are closely related. Resource state depends on
transaction state: a reserved resource becomes available when (and only when) the
transaction associated with the reservation becomes terminated. Transaction state also
depends on resource state: the NTCP server will not accept a proposal (that is, create a
new accepted transaction) if it is unable to acquire reservations for the control point
resources associated with all the control points involved in the transaction. The server
must perform these state transitions atomically: at any point in time, if a transaction is
accepted or executing, then all resources associated with that transaction must be
reserved for that transaction, and if a resource is reserved, then the transaction associated
with that reservation must be accepted or executing.

3.5 Serialization
This state model guarantees that:

• For each control point resource, at most one transaction involving that resource is
executing at any time.

• Any two transactions that are executed on one control point resource are executed
in the same order in which they were accepted.

This model does not make any guarantees about the order in which actions involved in a
single transaction are executed (e.g., if a transaction involves control points A and B, then
the action involving A may be executed before or after the action involving B, the two
actions may be executed simultaneously, or the execution times may overlap).

This model also makes no guarantees about what happens in the time between two
transactions involving the same client; for example, if a client sends requests creating and
executing transactions A and then B involving control point X, there is no guarantee that
some other client has not sent requests creating and executing transaction C involving
control point X during the time after transaction A has completed and before transaction
B has been accepted. If that kind of guarantee is desired, it could be provided via a
community scheduler (see section 0).

4 The Protocol
The requests in this section comprise the NEES Control Protocol.

NEES Teleoperation Control Protocol

Laura Pearlman Page 9 5/6/2003

4.1 The Propose Request
The propose request is sent by the coordination module as part of the negotiation phase,
to initiate a transaction and verify that a simulation is willing/able to attempt a specific
action (or set of actions). The parameters passed with this request are:

• A new, unique transaction name.
• The proposal expiration time.
• The transaction expiration time (the time after which an accepted transaction

becomes terminated).
• The per-control-point request parameters: a set of data structures, each of which

contains a control point name and a typed structure that describes what kind of
action is requested and lists the parameters for that action. [For July, this will be a
simple structure that allows the specification of one or more of the following 12
quantities: Force, Moment, Displacement, and Rotation along the X, Y, and Z
axes. The units used to express these quantities will be agreed on in advance].

There are three possible results of a propose request:

• A new transaction is created in the accepted state, with the transaction name,
transaction expiration time, and per-control-point request parameters specified in
the request. [Open issue: should we allow the server to change the transaction
expiration time? For the July demo, the server won’t change this.]

• No new transaction is created. This will occur if the transaction name
corresponds to an existing transaction (even a terminated one).

• A new transaction is created in the terminated state with the parameters specified
above. This will occur if the proposal is not compatible with the server’s local
policies, if the server receives the proposal after the proposal expiration time, or if
the server is unable to acquire reservations for all the physical resources involved
in the transaction, or if there is some other problem with the request (e.g., if the
server doesn’t understand the per-control-point request parameters).

The reply sent by the server will consist of the transaction name, an indication of the
status (optionally including per-control-point status information [for July, no optional
information will be returned]).

[Open issue: how to guarantee that the transaction names are unique. Does OGSA have
a mechanism for this? Or should we have a separate request for the server to create a
transaction name, or assign a namespace to the client?]

4.2 The execute request
The execute request is used to request that a server execute a transaction (that is, attempt
the requested set of actions). The parameter passed with the execute request is:

• A transaction name: the name of a transaction in the accepted state.

There are two possible results of an execute request are:

NEES Teleoperation Control Protocol

Laura Pearlman Page 10 5/6/2003

• The named transaction is changed from the accepted state to the executing state,
and the server begins executing the transaction.

• No transaction is executed or changes state. This occurs if the named transaction
does not exist or is not in the accepted state, or if the client is not authorized to
execute that transaction

The server does not wait for execution to complete before replying to the execute request;
the results of the actual execution are communicated using subscription/notification.

4.3 The Cancel Request

The cancel request is used to cancel a transaction, i.e., to change that transaction’s state
to terminated. The parameters passed with the cancel request are:

• The name of the transaction to cancel.
• A flag indicating whether or not to cancel the transaction if it’s in the executing

state.

There are three possible results of a cancel request:

• The named transaction is changed from accepted to terminated.
• The named transaction is changed from executing to terminated, and the actual

execution is interrupted; this occurs only if the flag argument indicates that the
cancellation should occur even if the transaction is executing.

• No transaction changes state or is interrupted; this occurs if the transaction
doesn’t exist or is not accepted or executing, if the transaction is executing and the
flag argument specifies that executing transactions should not be cancelled, if the
transaction is executing and the server is incapable of interrupting it, or if the
client is not authorized to cancel this transaction.

The reply from the cancel request includes status information.

4.4 The Set_parameters request
The set_parameters request is used to set experiment parameters. Its argument is a set of
data structures, each containing:

• The parameter name (a string), and
• A typed data structure representing the value of the parameter (for July, this will

simply be a string).

There are two possible results of a set_parameters request:

• The value of the parameter will be set, or
• The value of the parameter will not be set (because of a malformed request or an

authorization failure)

NEES Teleoperation Control Protocol

Laura Pearlman Page 11 5/6/2003

4.5 Queries
The information from the following queries will also be available as service data
elements.

4.5.1 Transaction_status

The transaction_status request is used to query the status of a transaction. The parameter
passed with the transaction_status request is:

• The name of any existing transaction.

The reply includes the state of the transaction (accepted, executing, or terminated) and
any additional available state related to that transaction (e.g., per-control-point results of
a transaction that has executed successfully [For July, this will be a data structure
containing the transaction name and transaction state, and, if the state is terminated, the
termination status (success, execution_failed, or, for transactions that were cancelled or
rejected, never_executed) and, for successful or failed transactions, the 12 measured
values for force, moment, displacement, and rotation on each of the three axes].

4.5.2 Parameter_status
The parameter_status request is used to query the values of experiment parameters. The
parameter passed with parameter_status is:

• Zero or more experiment parameter names.

The reply consists of a status value and a set of data structures of the same type used in
set_parameters

• The parameter name (a string), and
• A typed data structure representing the value of the parameter (for July, this will

simply be a string).

If any parameter names were specified in the call to parameter_status, then results for
those parameters are returned; otherwise, a list of all parameters and their values is
returned.

4.5.3 Control_point_status

The control_point_status request is used to query the current status of control points.
The parameters passed with control_point_status are:

• A Boolean immediate flag
• Zero or more control point names.

NEES Teleoperation Control Protocol

Laura Pearlman Page 12 5/6/2003

The reply consists of a status value and a set of data structures consisting of:
• A control point name (a string), and
• A typed data structure representing the data for that control point (for July, the

measured or calculated values for force, moment, displacement, and rotation on
each of the three axes).

If any control point names are passed as input parameters, control_point_status returns
the values for those control points; otherwise, control_point_status returns the values for
all control points.

The server may keep a cache of control point values, and may use these values to reply to
control_point_status requests; however, the immediate flag, if set, indicates that the client
wishes the latest values, not cached values.

5 Security Considerations
The possible risks associated with a physical simulation are higher than the risks
associated with most computing applications – accepting a “bad” request from a
malicious (or simply broken) remote application could damage equipment or experiment
systems, or in some cases even lead to serious injury. Although care will be taken to
make the initial control service reasonably secure, they will be built using commonly-
availably tools and will run on commodity operating systems, and cannot be guaranteed
to be completely secure. Equipment sites should have appropriate non-software-based
controls and procedures in place to safeguard their equipment and personnel.

6 Future Work: Transaction Queueing
Future versions of the NTCP service will support queues of transactions; the transactions
in a queue will be executed in the order in which they appear in the queue. This will
most likely be accomplished by extending the transaction state model to include an
additional state (queued_to_execute) and creating a new request,
propose_queued_transaction, with the same arguments as the propose request, plus one
additional argument:

• The name of a preceding transaction.

The preceding transaction must be a transaction in either the accepted, executing, or
queued_to_execute state and must be at the end of a queue (that is, it must not be the
preceding transaction for any other transaction).

If the proposal is accepted, the newly-created transaction will be added to the queue
following its preceding_transaction and will be in the accepted state. An execute request
on this new transaction will result in its being placed in the queued_to_execute state; if
the preceding_transaction of a queued_to_execute transaction terminates, the
queued_to_execute transaction may begin execution as soon as all earlier transactions in
its queue have terminated and all resources required for that transaction are available.

NEES Teleoperation Control Protocol

Laura Pearlman Page 13 5/6/2003

Appendix: Using a Community Scheduler with NTCP

Note: this section involves grid components that have not been implemented yet.

A community scheduler using the SNAP protocoli could optionally be used to provide
serialization guarantees beyond those described in section 3.5 and to provide a more
virtual model of actuators to the applications.

NTCP Server
NTCP Server

NEES Community
Scheduler

Experiment 1
Scheduler

R1 R2 R3 R4 R5 R6 R7

Experiment 1
client

Experiment 2
Scheduler

Experiment 1
client

Experiment 2
client

Experiment 2
client

R8

NTCP NTCP NTCP NTCP

NTCP NTCP NTCP NTCP

RSLA (and
delegation)

RSLA (and
delegation)

Figure 5: Using community schedulers with NTCP

The SNAP protocol uses Service Level Agreements (SLAs) to negotiate access to
resources. A Resource Service Level Agreement (RSLA) is used to reserve a set of
resources (such as cycles on particular compute servers or use of specific physical
actuators); a Task Service Level Agreement is used to submit a task to be executed on an
appropriate (but not explicitly specified) set of resources.

The NEES project could run a community scheduler to manage NEES resources: sites
could configure their local servers so that some subset of their resources are controlled
only by that scheduler. When a new experiment is to be run, an experiment scheduler
could be created to handle control requests for that experiment. The experiment
scheduler would negotiate RSLAs with the community scheduler (reserving specific
control points for the exclusive use of that experiment). The RSLAs obtained by the
experiment schedulers could be used to ensure that, for the duration of an experiment, the
control points used by that experiment are used only by that experiment (this could be
enforced by having each experiment scheduler run as a new, transient authentication
identity, and having the community scheduler delegate authority to that identity). An

NEES Teleoperation Control Protocol

Laura Pearlman Page 14 5/6/2003

experiment scheduler could then enforce any application-specific protocol used to
coordinate actuator access among the components of a distributed application.

The client applications involved in an experiment would then communicate with the
experiment scheduler using the NTCP protocol. The experiment scheduler would
potentially perform two functions: maintaining its own, distributed-experiment-wide
namespace for control point names, (facilitating the “hot-swapping” of one simulation for
another, e.g., replacing a failed physical experiment with a computational simulation,
without exposing the details to the client application), and enforcing any application-
specific consistency scheme.

Acknowledgments
We are grateful to Nabil Deeb, Paul Hubbard, Benson Shing, and Bill Spencer for
providing valuable insight and comments on drafts of this document.

i SNAP: A Protocol for Negotiating Service Level Agreements and
Coordinating Resource Management in Distributed Systems. K. Czajkowski, I.
Foster, C. Kesselman, V. Sander, S. Tuecke; 8th Workshop on Job Scheduling
Strategies for Parallel Processing, Edinburgh, Scotland, July, 2002.

