

Technical Report NEESgrid-2003-04
www.neesgrid.org

Draft Whitepaper Version: 1.1.2
Last modified: September 2, 2003

Protocol Specification for the NSDS, Driver and DAQ

Paul Hubbard1

1 Argonne National Laboratory

Feedback on this document should be directed to hubbard@mcs.anl.gov

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

mailto:hubbard@mcs.anl.gov

Protocol Specifications for the NSDS, Driver, and DAQ Page 2

Table of Contents
1. Summary ... 3
2. Revision History ... 3
3. Introduction... 4
4. Terminology.. 4
5. Code Access, Mailing List and Bugzilla Archive... 4
6. Protocol Validation and Testing ... 4
7. Rough Design Overview... 5
8. Communications Overview .. 6
9. Connections and Ports... 6
10. Timestamps ... 6
11. The Role of the Driver .. 6
12. Data Channel Protocol and Format... 6
13. Data File Format ... 7
14. Control Channel Protocol and Format .. 8
15. Error Handling and Syntax ... 9
16. The Role of the Server Daemon.. 10
17. The Role of the Library Code ... 10
18. Post-experiment FTP uploads ... 12
19. Metadata Downloading and Remote-Controlled DAQ... 12
20. Testing, Benchmarking and Profiling ... 12
21. Where to Begin? ... 13

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 3

1. Summary

This document explains the interactions between the NSDS, driver, and DAQ for the
purposes of debugging, replacing the driver or DAQ code, or customizing the DAQ code.
In addition to describing in detail the various components that constitute this system, the
document also explains protocols and formats associated with data and control channels
and data files, as well as error handling and syntax, and provides examples for each.
Tools for testing components that have been debugged or replaced are also discussed.

This document provides a minor correction to 1.1, which in turn superseded NEESgrid
Technical Report 2003-04, version 1.0. New information in 1.1, which was released
8/18/03, included:

• Optional open-ports and close-ports commands
• Defined syntax of error messages for open-port{s} and unknown commands
• Information about how to use the DNDTester, and where to get it
• Miscellaneous descriptive text

2. Revision History

Version 1.1.1, released 8/28/03, includes corrections to “Section 15: Error Handling and
Syntax.”

Version 1.1.2, released 9/2/03, includes a correction to the syntax of error handling on the
opening and closing of multiple ports.

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 4

3. Introduction

This document is for people wishing to understand the NSDS-driver-DAQ interactions,
either for debugging or in the interest of replacing the driver or DAQ code. Sites
customizing the DAQ code should also find this of use. Other documentation is planned
for those incorporating this code into their sites.

It is assumed that the reader is familiar with the NEESgrid project and its goals. If not,
information can be found at http://www.neesgrid.org/.

4. Terminology

NSDS means NEESgrid Streaming Data Server. It’s a piece of Java-based code that
handles security, client subscriptions, streaming data out to the world, and so forth.

DAQ means data acquisition system. The NEESgrid reference platform is LabVIEW
from National Instruments. We provide example code in CVS that implements the
functionality in this document.

Driver means the NSDS driver. This is a piece of multithreaded C code meant to abstract
the NSDS from the specifics of each different DAQ system. More on this later.

5. Code Access, Mailing List and Bugzilla Archive

CVS access to the NEESgrid code archive is documented at
http://www.mcs.anl.gov/neesgrid/cvs.html. A Bugzilla archive for logging and tracking
bugs and feature requests is available at http://bugzilla.mcs.anl.gov/neesgrid/. There is
also a mailing list; instructions can be found at http://www.mcs.anl.gov/neesgrid/

Further documentation is found in nsds-driver package; there is extensive Doxygen-based
documentation of the code and its workings in HTML. A copy of this documentation is
mirrored at http://www.mcs.anl.gov/neesgrid/driver/index.html

6. Protocol Validation and Testing

As of July 2003, the DNDTester application, found at
http://www.mcs.anl.gov/neesgrid/dndtester, will test and validate any DAQ
implementation for correctness and completeness. Its use is strongly recommended.

Hubbard www.neesgrid.org 8/18/03

http://www.neesgrid.org/
http://www.mcs.anl.gov/neesgrid/cvs.html
http://bugzilla.mcs.anl.gov/neesgrid/
http://www.mcs.anl.gov/neesgrid/
http://www.mcs.anl.gov/neesgrid/driver/index.html
http://www.mcs.anl.gov/neesgrid/dndtester

Protocol Specifications for the NSDS, Driver, and DAQ Page 5

7. Rough Design Overview

Figure 1: Interactions of NSDS, driver, and DAQ.

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 6

Depending how your site is configured, you may need to rewrite the driver, DAQ code,
server daemon or library code. The rest of the document should clarify which portions
need reworking.

8. Communications Overview

The main goals of this system were simplicity, portability and transparency. From that,
the following choices were made:

• All data (numeric) and commands will be sent in ASCII
• We will assume that the network between the DAQ and driver is secure
• We will use two TCP ports per logical connection, in the interests of keeping data

and control distinct.
• We will add a driver, so that sites not using LabVIEW can use their DAQ system

with minimal effort.
• DAQ should not know or care if the network is present, missing or unreliable.

Data comes first; we stream it out if possible but strive not to interfere with DAQ.

More design information can be found in the NEESgrid System Architecture white paper.

9. Connections and Ports

The communications used between NSDS and driver and DAQ utilize two TCP ports.
Currently, the NSDS listens on 42420/42421 and the DAQ listens on 55055/55056.
However, these are changeable – the driver via the command line, and in the example
LabVIEW code, it’s a front panel control in the ‘Server Daemon’ program.

10. Timestamps

It is of note that this code uses ISO 8601 timestamps for all time markers. We use the
UTC encoding, with fractional seconds for subsecond-sampled data. See nsds-util.c for C
code to generate these; there is LabVIEW code in the subroutines library as well.

11. The Role of the Driver

In the provided code, the driver is a simple set of TCP pipes. Other than watching for the
initial welcome message from the NSDS, all commands, data and responses are
forwarded as-is. Readers may wonder why the driver is in the loop at all, given its lack of
functionality. It’s actually there only so that you can modify it for your own DAQ
system. Because of that, most of the driver code is error handling and comments.

12. Data Channel Protocol and Format

This is as simple as possible. The format is columnar ASCII, one line per timestamp, with
a new line to terminate the record. Each channel is appended as

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 7

Channel name TAB value

For example:

2002-11-13T15:48:55.26499 ATL1 -0.0064090 ATT1 -0.0042720

is a two-channel datum.

That’s all there is to it, really. If your data is not simply converted to ASCII (e.g., image
data), you will need to work out a data format with the NEESgrid data repository team at
NCSA.

Note that we repeatedly send the channel names because the contents of the data stream
will change over time as channels are subscribed or released.

13. Data File Format

The data file has a very similar format, with a couple of changes. It’s also tab-delimited
ASCII, one line per timestamp, but there’s a ‘metadata header’ as defined by the
metadata folks from NCSA, and there’s no need to replicate the channel names, since the
format is fixed. Here’s an example to illustrate the format:

Event ID: 1757740136.322000000.0
Active channels: ATL1,ATT1,ATL3,ATT3
Sample rate: 200.000000
Channel units: g,g,in,kip

Time ATL1 ATT1 ATL3 ATT3
2002-11-13T15:48:55.26499 -0.006409 0.004272 -0.008850 -0.007935
2002-11-13T15:48:55.41499 -0.005798 -0.003662 -0.009766 -0.006714

Note the addition of a column header line that serves as a key to the data, and the
metadata header, defining what channels are present and their engineering units. The
event ID is generated and tracked by the metadata editor and is outside the scope of this
document; we save and propagate it as opaque text.

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 8

14. Control Channel Protocol and Format

Similarly, the control channel is ASCII, one command or response per line, and newline
delimited. All command are synchronous, in that the command is completed before a
response is returned.

Command listing:

daq-status Error, Offline, Unknown, Running,

or Stopped
list-channels Active channel listing, comma

delimited.
open-port{channel name} See below for exact syntax
close-port{channel name} Stop subscription to given channel;

see below
open-ports {comma-separated list} Optional – open N ports at once
close-ports {comma-separated list} Optional – close N ports at once
daq-stop Unimplemented command
daq-start Ditto

Sample exchange:

NSDS->driver->DAQ:

daq-status

DAQ->driver->NSDS:

Running

NSDS->driver->DAQ:

list-channels

DAQ->driver->NSDS:

ATL1,ATT1,ATV1,ATV2,Temp,RH

NSDS->driver-DAQ:

open-port ATT1

DAQ->driver->NSDS:

Streaming data on data channel from port ATT1

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 9

(The data for sensor ATT1 will be added to the data stream on the data channel, usually
by the next data point)

NSDS->driver-DAQ:

open-ports ATT1,ATT3

DAQ->driver->NSDS:

Streaming data on data channel from port ATT1,ATT3

Note that this is an optional command, not yet present in the reference implementations.

NSDS->driver-DAQ:

close-port ATT1

DAQ->driver->NSDS:

Stopping data on data channel from port ATT1

NSDS->driver-DAQ:

close-ports ATT1,ATT3

DAQ->driver->NSDS:

Stopping data on data channel from port ATT1,ATT3

Note that this is an optional command, not yet present in the reference implementations.

15. Error Handling and Syntax

As of the release of the DNDTester protocol validation tool, we have added error
handling and clarified to remove ambiguities.

In the event of an unrecognized command, the DAQ should respond back with the
following:

Unknown command ‘%s’

Where %s is the receieved command, e.g.

NSDS driver->DAQ:

orken-port Temp

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 10

DAQ->driver->NSDS:

Unknown command ‘orken-port Temp’

Code for this can be found in fake_daq, Dataq-194, and the ADXL202 streamer, as well
as the server daemon.

In the event of an unknown or invalid channel ID on an open/close port{s} command, the
DAQ should return the following string:

Invalid port ‘%s’

Where %s is the string sent from the NSDS, e.g.

NSDS->driver->DAQ:

open-port Borked

DAQ->driver->NSDS:

Invalid port ‘Borked’

For open-ports and close-ports, any invalid channel in the channel list should cause an
error message; all listed channels must be valid for the command to be valid.

16. The Role of the Server Daemon

This is a standalone LabVIEW program that is running in the background. Its job is to
set up the TCP connections, handle the control channel, and set global variables for the
library code. For example, when a subscribe (‘open-port’) request comes in, the daemon
adds the channel name to a global list of subscribed channels. The next time the DAQ
sends data out, the library code will note the new subscription and add it to the outgoing
datum.

Note that the server daemon and/or TCP connections are intentionally independent of the
DAQ code. The global variable to mediate may seem peculiar, but it allows the daemon
and DAQ to decouple nicely. DAQ can run whether or not the server is up, or if the
network fails.

Sites replacing the server daemon should have little problem re-writing it in C/C++, Java
or Perl – it’s quite simple.

17. The Role of the Library Code

The library code has supporting routines for the server daemon and the DAQ code. There
are subroutines for converting data into ASCII, saving to disk, and streaming via TCP.
Most of this is not of interest unless you want to see how these are done with LabVIEW.

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 11

Two routines are of special interest ‘Data array to NSDS stream’ and ‘Data array to
datafile stream.’ They perform similar function but have one key difference: Both take a
vector of real numbers and a channel listing, but differ in their resulting ASCII. The
NSDS version looks up each channel in the global list of subscribed channels, and only
adds the sensor if it is needed. The datafile version always saves every sensor; the data
file always contains all of the data captured.

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page 12

18. Post-experiment FTP uploads

There are two methods of remote data access, streaming and batch. So far, we’ve looked
at the mechanisms for delivering streaming data. However, if you look at Zombie DAQ,
you will find the code to do post-experiment data uploads. We use the National
Instruments Internet Toolkit, specifically the FTP transfer routines. Post-experiment, we
FTP the data file to the NEES-POP or other specified destination. Once that’s complete,
we write a semaphore file named {datafile}.written. This triggers its transfer into the
metadata handling system.

19. Metadata Downloading and Remote-Controlled DAQ

Mirroring the FTP uploads of data, this is a method to allow remotely controlled DAQ.
The Zombie DAQ code downloads a metadata file from the repository that contains all of
the information in the data file header: Channels, units, sample rate and Event ID. This is
saved to metadata.ini for later use (Server daemon reads this file, for example) and DAQ
begins. Note that ending condition is a front panel ‘Stop’ button but this could be any
appropriate local condition that signals end-of-run.

The Zombie just fetches the file, and then calls the routines to parse it. If you need a
different metadata format, you can work one out with the NCSA metadata team.

20. Testing, Benchmarking and Profiling

Once you have assimilated the design and replaced portions of it, you will need to test
your components. There are several programs in the archive to assist with this.

a) fake_daq.c A simplest-case data source, useful for testing the current driver and
NSDS. Useful as an end-to-end test, and possibly for benchmarking. You can set
the sample rate from the command line, and the number of simulated channels is a
compile-time constant.

b) NSDS Simulator.vi LabVIEW code to emulate a normal set of operations – query
DAQ status, list channels, subscribe to a requested channel, and plot the
streaming data as it arrives. A good test of end-to-end functionality, it also has the
side benefit of plotting the data, which is often very telling.

c) NSDS Stress Tester.vi LabVIEW code that is created for benchmarking and stress
testing. It subscribes to all listed channels, which is useful.

d) Stress test Fake DAQ.vi Generates as many channels of simulated data as you
request.

e) DNDTester will exercise any DAQ implementation and test its protocol
correctness and compliance.

Note that the Server Daemon and NSDS simulator programs display the commands and
responses on their front panels; this is useful for checking and response command syntax.

Hubbard www.neesgrid.org 8/18/03

Protocol Specifications for the NSDS, Driver, and DAQ Page

Hubbard www.neesgrid.org 8/18/03

13

Unfortunately, the NSDS and Chef portions of the system do not yet have decomposition
and testing tools made available. Until those are present, I recommend you use the above
list to test your new components.

Profiling can take several forms: network utilization, CPU usage, sampling rate, etc.
Different tools are appropriate for each; here are some I’ve found useful so far.

a) LabVIEW has an excellent profiler (Menu is Tools/Advanced/Profile VIs) that is
quite useful in locating bottlenecks.

b) If you have Windows 2k, NT or XP, the Task Manager is useful for checking
CPU, memory and network utilization.

c) On the NEES-POP, standard Unix tools such as top and lsof are invaluable for
monitoring the driver and NSDS.

21. Where to Begin?

Having read this far, you are probably a bit adrift in new acronyms and design flotsam.
Check out the nsds-driver package from CVS, and browse through fake_daq.c. It
implements much of what your system will need, and is extensively commented. This
code is documented in the html subdirectory, with auto-generated Doxygen pages.

Note that you will also need to check out and compile the ‘flog’ message library before
you can compile fake_daq.

Best of luck!

	Summary
	Revision History
	Introduction
	Terminology
	Code Access, Mailing List and Bugzilla Archive
	Protocol Validation and Testing
	Rough Design Overview
	Communications Overview
	Connections and Ports
	Timestamps
	The Role of the Driver
	Data Channel Protocol and Format
	Data File Format
	Control Channel Protocol and Format
	Error Handling and Syntax
	The Role of the Server Daemon
	The Role of the Library Code
	Post-experiment FTP uploads
	Metadata Downloading and Remote-Controlled DAQ
	Testing, Benchmarking and Profiling
	Where to Begin?

