
NEESgrid TeleOperations Protocol Server Design 1

Technical Report NEESgrid-2002-03 www.neesgrid.org

Technical Report NEESgrid-2002-03
www.neesgrid.org

Version 1.0

Last modified 3/1/2002

NEESgrid TeleOperations Protocol Server Design

Laura Pearlman1

1 University of Southern California, Marina del Rey, CA 90292

Feedback on this document should be directed to neesgrid-si@neesgrid.org

NEESgrid TeleOperations Protocol Server Design 2

Technical Report NEESgrid-2002-03 www.neesgrid.org

Table of Contents
1 Introduction 3
2 Protocols Used by the NTOP Server 5

2.1 Communication between the NTOP Server and Clients: NTOP 5
2.2 Communication between the NTOP Server and Local DAQs 6
2.3 Dynamic Local Administration 6

3 Access Control 7
4 NTOP Server Architecture 7

4.1 Overview 7
4.2 Modules 9

4.2.1 Simple Modules 9
4.2.2 The Data Streaming Module 9
4.2.3 The DAQ Communication Module 9

4.3 Threading 10
Acknowledgments 10

NEESgrid TeleOperations Protocol Server Design 3

Technical Report NEESgrid-2002-03 www.neesgrid.org

1 Introduction
A typical earthquake engineering experiment today (Figure 1) involves at least one data
acquisition and control system (DAQ), zero or more control points (shake tables,
actuators, etc.) and one or more sensors (accelerometers, strain gauges, etc). A DAQ
sends control messages to control points and/or receives data from sensors; a typical
experiment might involve one DAQ that sends control messages to a shake table (or to a
small number of actuators) and receives data from several sensors, and a second DAQ
that receives data from many additional sensors.

DAQ

control point (actuator)

control point (actuator)

sensor (strain gauge)

sensor (strain gauge)

sensor (accelerometer)

sensor (accelerometer)DAQ

control

control

data

data

data

data

Figure 1: An experiment (without NTOP)

The experiment is typically controlled by a person via the user interface provided by each
DAQ. In hybrid experiments, the experiment (the physical simulation) is controlled by a
software simulation via an interface particular to the DAQ system being used.

The purpose of the NEESgrid TeleOperations Protocol (NTOP) service1 is to provide a
common protocol that can be used by remote applications (as shown in Figure 2) to
interact with a running experiment over NEESgrid.

NEESgrid TeleOperations Protocol Server Design 4

Technical Report NEESgrid-2002-03 www.neesgrid.org

DAQ

control point

control point

sensor

sensor

sensor

sensorDAQ

control

control

data

data

data

data

NTOP Server

Web Portal

GUI

Numeric
simulation

SW

NTOP

NTOP

NTOP

Figure 2: An experiment using an NTOP server

Specifically, the NTOP server should:
• accept control requests and forward them to the DAQ;
• accept requests to "subscribe to" (or "unsubscribe from") the streaming data for a

sensor;
• provide access control for the requests described above;
• handle requests from multiple remote clients simultaneously;
• control (and receive data from) multiple local experiments simultaneously;
• support dynamic configuration (adding/deleting control points and sensors, and

associating individual control points and sensors with different experiments over
time, responding to queries about which experiment is associated with a specific
sensor or which sensors are associated with a specific experiment, etc.); and

• support decimation of sensor data [I'm not sure exactly what the requirements are
here -- do we need to allow the user to specify an arbitrary decimation factor? Do we
just support a flag for whether the user gets decimated or non-decimated data, and
determine the factor ourselves? Or do we not even give the user an option, and
determine that high-volume data streams are always decimated?]

The NTOP server will not be the only interface to send control requests or receive data
from the local DAQs. We expect that, for safety reasons, sites will continue to control
most of their experiments using their local DAQ interface; streaming data from these
experiments should still be available via the NTOP server. We also do not anticipate the
use of the NTOP server to collect data for use after the experiment has been completed;
the NEESgrid architecture specifies separate protocols and services for that purpose.

[Note: I don't think the NTOP server needs to support queries about sensor/control point
metadata, such as calibration info, but I'm not 100% sure.]

NEESgrid TeleOperations Protocol Server Design 5

Technical Report NEESgrid-2002-03 www.neesgrid.org

2 Protocols Used by the NTOP Server

2.1 Communication between the NTOP Server and Clients: NTOP
NTOP is the protocol used between the NTOP server and client applications. It should be
relatively easy to parse and extend; for that reason we believe that it should be encoded in
SOAP and should be versioned [or does SOAP itself require versioning, i.e. do the SOAP
headers call for a service-specific version number?].

Many of the NTOP requests will involve a particular sensor or control point. The remote
user should not need to know the particular local configuration in order to make these
requests; in an NTOP request, a sensor (or control point) should be expressed in terms of
the name of the experiment and the name of the sensor (or control point) relative to that
experiment.

NTOP requests include:
• Subscribe (subscribe to a data channel)

o inputs: sensor name (experiment name plus relative sensor name), listener ip/port
o result: data from the named sensor is sent to the listener ip/port until an

unsubscribe request is received or the experiment trial is finished. For each data
point, the output should include:
� the data channel name (experiment/sensor name), to support applications that

receive data from more than one sensor on the same listener port
� a timestamp (relative to the start of the trial), to support synchronization

within a trial
� the actual data value (in units of voltage -- unit conversion data should be

available in the metadata database)
o reply: success or failure
o access control requirements: read permission on the data channel (access control

is discussed in Section 3).
o other possible extensions:
� decimation (results in only a sampling of data being sent to the listener

channel),
� other stop criteria (send at most N data points, stop at a particular time, etc.),
� alternate output format (some applications may expect columnar input rather

than SOAP-encapsulated data; it might make sense to offer this as an option.
Or of course we could provide a simple filter to run on the client side).

• Unsubscribe (cancel a subscription):
o inputs: sensor name, listener ip/port, as in subscribe request
o result: data from the named sensor will no longer be sent to the specified listener

ip/port.
o reply: success or failure
o access control: must be same entity that did the associated subscribe request.

• Control (send a request to a control point):
o inputs: control point name (experiment name plus relative control point name),

requested action and parameters (e.g., "move actuator forward 1 cm" or "run
shake table with this waveform")

NEESgrid TeleOperations Protocol Server Design 6

Technical Report NEESgrid-2002-03 www.neesgrid.org

o outputs: success or failure, plus detailed output (e.g. "actual distance moved was
1.05 cm")

o note: obviously, we need to work out many more details about the
actions/parameters.

o access control: at least something like control permission on the control channel.
Maybe more fine-grained actions as more details are worked out.

• Query sensor/control instantiation (maybe?)
o inputs: sensor or control point name (as would be specified to the subscribe or

control request)
o output: true or false -- indication of whether there is a physical sensor/control

point associated with this name, and possibly more detailed information if the
local DAQ supports this kind of query

o access control: query permission on the sensor or control point
o note: this request is probably not essential -- the metadata database should be used

for basic information, such as whether a sensor is a strain gauge or an
accelerometer.

2.2 Communication between the NTOP Server and Local DAQs
The protocols used to communicate between the NTOP server and the local DAQs may
vary based on the capabilities of each local DAQ; it is, therefore, important to structure
the NTOP server in such a way that it is relatively easy to install different drivers for
different DAQs (and possibly to configure the NTOP server to use different drivers for
different DAQs simultaneously). However, we will attempt to define a single protocol
that will be supported by several of the most common DAQ systems, and we'll provide a
driver for that protocol.

This protocol should support:
• Establishing connections for sensors and control points -- either in advance, before a

trial begins, or (if supported by the DAQ) creating and shutting down connections as
needed during the course of a trial.

• Streaming sensor data from the DAQ to the NTOP server.
• Control requests from the DAQ to the NTOP server.
• Notifying the NTOP server when a trial is finished.

2.3 Dynamic Local Administration
Some day-to-day administration tasks will need to be done by local site personnel. Each
of these tasks could be accomplished via an administrative protocol, or by updating local
configuration files (and either signaling the NTOP server to reread them, or having the
server poll those files periodically). Of course, if an administrative protocol is chosen,
the server should make sure that the configuration change will persist if the server is
restarted (e.g., by writing the information to a database). These tasks include:

• Assigning a sensor or control point to an experiment: mapping an (experiment name,

relative sensor (or control point) name) pair to a (DAQ, channel) pair.
• Freeing a sensor or control point: removing a sensor or control point name mapping.
• Granting or revoking permissions.

NEESgrid TeleOperations Protocol Server Design 7

Technical Report NEESgrid-2002-03 www.neesgrid.org

3 Access Control
Local site administrators will be able to grant permissions to perform the subscribe,
control, or query actions (see section 2.1) on control points and sensors, using a local
configuration file. If the local site administrators grant these permissions to a CAS
server, community administrators may grant these permissions to other community
members. For example, a typical scenario might be:

1. Alice is designated as a site administrator at site.edu. She uses the local
configuration file to grant, to the CAS server, permission to perform all actions on
all control points and servers. The central CAS administrators for the NEESgrid
community grant her permission, within the CAS server, to create CAS resources
under site.edu.

2. Alice finds out that Bob is the PI for experiment XYZ, which will run on
resources at site.edu. She uses CAS to:
• create an object ("/site.edu/XYZ") that represents that experiment at her site,

and
• grant permission to Bob to create CAS objects within that experiment (such as

"/site.edu/XYZ/sensor1") that represent sensors and control points within that
experiment and to grant permissions on them.

3. Bob then either:
• create CAS objects for each sensor and control point and use CAS to grant

permissions on them ("this group of people can read sensor
/site.edu/XYZ/sensor1"), or

• grant permissions that span the entire experiment ("this group of people can
read all the sensors in experiment /site.edu/XZY").

4. In the meantime, Alice performs the other configuration tasks associated with
setting up an experiment (e.g., at her local site, she creates the mappings that map
"experiment XYZ, sensor 1" to "DAQ 2, channel 4").

4 NTOP Server Architecture

4.1 Overview
The NTOP server will consist of these modules:

• The i/o and authentication module handles low-level network i/o and authentication

(and parses any proxy restrictions present in the authentication credential); this is a
standard Globus component.

• The NTOP parsing module parses an NTOP request.
• The authorization module determines whether or not an NTOP request is authorized,

based on the local configuration and any proxy restrictions.
• The subscription module handles subscribe requests: it communicates with the data

streaming module to locate (or create) the appropriate input data stream and output
data stream, and creates a mapping between the two. It also handles unsubscribe
requests in a similar fashion

NEESgrid TeleOperations Protocol Server Design 8

Technical Report NEESgrid-2002-03 www.neesgrid.org

• The data streaming module reads input data streams from the DAQ communication
module, formats the data according to the NTOP protocol, and writes it out to the
appropriate output data streams.

• The control request module handles control requests by forwarding them to the DAQ
communication module.

• The administration module handles local administration requests.

i/o and
authentication

Authorization

NTOP
parsing

Subscription

Data Streaming

DAQ
Communication

Control
Request

Administration

1

2 4b

4a

5b

5a
Config

data

NTOP DA
(6b

Admin interface

data

NTOP
(7a)

6a
(if needed)

NTOP
Engine

3

Figure 3: NTOP server modules

For example, a subscription request is read by the i/o and authentication module and
passed to the NTOP engine (1), which sends it to the NTOP parsing module (2) for
parsing, the authorization module (3) to check authorization, and then to the subscription
module (4a). The subscription module forwards the request to the data streaming
module (5a), which locates the appropriate input data stream (or, if necessary, contacts
the DAQ communication module (6a) to create one), creates or locates the appropriate
output data stream, creates a mapping between the two, and returns status to the NTOP
engine, which communicates the result to the client.

The DAQ communication module also reads data from the local DAQs; when data
arrives, the DAQ communication module parses it and forwards it (as an input data
stream) to the data streaming module. The data streaming module checks to see which

NEESgrid TeleOperations Protocol Server Design 9

Technical Report NEESgrid-2002-03 www.neesgrid.org

output data streams are subscribed to that input stream, formats the data, and sends it out
to each waiting output stream.

4.2 Modules

4.2.1 Simple Modules
The i/o and authentication module performs raw i/o and authentication. The NTOP
parsing module translates raw input into a data structure containing a parsed NTOP
request. The authorization module combines that data structure with the configured
access control policy (including any policy from the authentication credential) and gives
a yes/no authorization decision. The control request module passes a request on to the
DAQ module and returns the result [this may become more complicated when we know
more about the control interface]. The subscription module translates a subscribe or
unsubscribe request into a request for the data streaming module and returns the result.

4.2.2 The Data Streaming Module
The Data Streaming module performs two basic functions:

1. It maintains mappings of:
• input stream names (experiment/sensor names) to input streams (data

structures)
• output stream names (ip address/port) to output streams (data structures)
• input streams to output streams (subscriptions)

2. It reads data from the DAQ Communication module and forwards it out to clients.

It can be divided into two modules, a Data Stream Mapping Module and a Data Stream
Flow Module. The Mapping module communicates with the Subscription Module (to
handle subscribe and unsubscribe requests), answers "what output streams are subscribed
to this input stream" queries from the Flow Module, and handles "remove all
subscriptions to this input stream" requests from the DAQ Communication Module (these
requests would be sent when an input stream closes down; e.g., when an experiment trial
ends). The Flow module communicates with the DAQ Communication module (which
sends it data) and with clients. [Note: it may make sense to subdivide the Flow module
into submodules to do data formatting, decimation, etc.]

4.2.3 The DAQ Communication Module
The DAQ Communication Module performs these functions:

1. It handles requests from the Data Stream (Mapping) Module to create an input
stream; that is, to take an (experiment name, relative name) pair, and find the
corresponding DAQ name and channel name and do whatever is appropriate to
get input from that channel.

NEESgrid TeleOperations Protocol Server Design 10

Technical Report NEESgrid-2002-03 www.neesgrid.org

2. It reads and parses input streams and forwards that data to the Data Stream (Flow)
module).

3. It notifies the Data Stream (Mapping) module when an input stream has closed.
4. It reformats requests from the NTOP Control module and sends them to the

appropriate control channel.

It can be divided into:
• A DAQ Driver, to handle the parsing of input streams, the DAQ-specific setting up of

input and control streams (e.g., sending a request to a server running on a DAQ, or
simply listening on a port and waiting an administrator to manually configure the
DAQ), and the translation of control requests into something that the DAQ will
understand; and

• A DAQ Channel Mapping Module, which handles the mapping of input stream
names to physical DAQ names and channel names, and the selection of the
appropriate driver for each DAQ.

4.3 Threading
The NTOP server will almost certainly need to be threaded for performance. This raises
questions about what level of consistency is required; we may need to consult with the
user community for answers.

1. Should we guarantee that all data sent to an output stream (possibly from several
input streams) be sent in the order that it was read? Probably not, as the data is
timestamped.

2. Should we guarantee that all data sent from one input stream to one output
stream be sent in the order that it was read from the input stream? Again,
probably not, as the data is timestamped.

3. Should we guarantee that all control requests sent from one client connection to
one control point be forwarded to that control point in the order received?
Probably.

4. Should we guarantee that all control requests sent from one client connection to
any of the control points in an experiment be forwarded in the order received?
Again, probably.

5. Should we guarantee that all control requests from all clients to one control point
be forwarded in the order received? How likely is it that more than one client
will be sending control requests to the same control point during one experiment?

Acknowledgments
This work was supported by the NSF NEESgrid project.

Bibliography

1 Kesselman et al., NEESgrid System Architecture Version 1.0

