
nees

 
 

 

 

NEESgrid SYSTEM 
ACCEPTANCE TEST PLAN 

 

 

 

 

Revision 1.0 
January 31, 2004 

 
 

This work was supported by the George E. Brown, Jr. Network for Earthquake 

Engineering Simulation (NEES) Program of the National Science Foundation under 

Award Numbers CMS-0126366 and CMS-0117853.



 

 2

 

 

PREFACE TO REVISION 1.0 
 

Acceptance testing is perhaps THE critical step of a software development effort.  It is a 

formal process whereby the performance, appearance, and usability of the software are 

measured and compared to criteria agreed upon by the developer and the user/client.  

Acceptance testing is intended to confirm that the software system and its components 

meet the specifications formulated as part of the development process.   

 

This draft Acceptance Test Plan for NEESgrid has been developed by the NEES 

Consortium Development Project and NEES Consortium, Inc. (the final “user/client” of 

the NEESgrid software system) in collaboration with the NEES System Integration team. 

It is intended as a starting point for formalizing a mutually agreeable acceptance test 

plan, procedures, schedule, and execution.  The ultimate goal is NEES Consortium, Inc. 

acceptance of the NEESgrid system and its components as a product that will be useful 

to the Earthquake Engineering community. 

 

There is no formal system and software requirements document for NEESgrid, nor clear 

specifications of the NEESgrid components.  This is a result of the somewhat inverted 

nature of this development effort – where the client/user (the Consortium) did not exist 

when the development effort began.  As a consequence, the authors based the 

requirements section of this plan on the document entitled “NEESgrid System 

Overview” (by Tom Prudhomme, Version 2.1, dated Oct. 30, 2002).  The system’s 

functional requirements are extracted from the text beginning with the section 

“Collaborative Project Design and Planning” (page 5) and ending with “Data Repository” 

(page 11”).  The SI team defined the system components it has developed and 

described how these components map to the functional requirements 

 

This version of the Acceptance Plan lays out the system requirements, the components 

that are to be delivered, and the procedures for how those components will be 



 

 3

evaluated for acceptance.  Detailed information on test procedures will be added as 

appendices.  It also demonstrates how the specific functionality criteria to be tested will 

be derived from the general text of the System Overview document. 

 

It is hoped that the formalization of an Acceptance Test Plan and Procedures will help 

ensure the delivery of an excellent software system that contributes to the success of 

the Consortium and of the NEES program in general. 



 

 4

 

TABLE OF CONTENTS 
1. INTRODUCTION...................................................................................................... 5 

1.1. Background....................................................................................................... 5 

1.2. Software System Requirements........................................................................ 5 

1.3. NEESgrid Components................................................................................... 14 

1.3.1. Streaming Data Components................................................................... 14 

1.3.2. Teleoperation Control Components ......................................................... 15 

1.3.3. Data Acquisition Subsystem .................................................................... 17 

1.3.4. Data Management Services..................................................................... 18 

1.3.5. CHEF and Worktools ............................................................................... 21 

1.3.6. Telepresence Video Components............................................................ 22 

1.3.7. Electronic Notebook................................................................................. 22 

1.3.8. Simulation Services ................................................................................. 23 

1.3.9. Centralized Services................................................................................ 24 

1.3.10. How Components Map to Requirements.............................................. 24 

1.4. Test Strategy................................................................................................... 25 

2. ACCEPTANCE PROCESS .................................................................................... 28 

2.1. Personnel........................................................................................................ 28 

2.2. Procedure ....................................................................................................... 28 

2.3. Actions ............................................................................................................ 28 

2.3.1. Action upon Success ............................................................................... 29 

2.3.2. Action Upon Failure ................................................................................. 29 

3. HIGH LEVEL TEST PLAN ..................................................................................... 30 

3.1. Resources....................................................................................................... 30 

3.2. Schedule ......................................................................................................... 30 

3.3. General Procedures........................................................................................ 34 

3.3.1. Unit Tests................................................................................................. 34 

3.3.2. Workflow/Integration and Gap Tests........................................................ 35 

3.3.3. Packaging Tests ...................................................................................... 36 

 



 

 5

 

1. INTRODUCTION 

1.1. Background 

The Systems Integration (SI) project within the NEES MREFC effort is responsible for 

developing the IT system for NEES.  That system, called NEESgrid, will be completed 

by September of 2004.  The system will be delivered to NEES Consortium, Inc., the 

entity that will manage NEES during the operational phase from 2004-2014 and beyond. 

 

This Acceptance Test Plan formalizes the expected handoff of SI products to the 

Consortium.  It provides a mechanism for the Consortium to review and accept the 

results of the SI efforts and to put formal closure on that portion of the Cooperative 

Agreement between the SI and NSF. 

 

The goal of the acceptance testing described in this document is to verify the overall 

quality, correct operation, scalability, completeness, usability, portability, and robustness 

of the functional components supplied by the SI team.. 

 

1.2. Software System Requirements 

In the absence of formal Software System Requirements and specifications documents 

within either the SI or the Consortium, the SI document entitled “NEESgrid System 

Overview” (Version 2.1, dated October 30, 2002) is used as the basis for development 

of this Acceptance Test Plan.  Functional requirements for various components of the 

NEESgrid system have been extracted or modified from that document and input from 

component and team leaders with the SI group. Table 1 presents those functional 

requirements, organized into general functional categories and expressed in the words 

used by the System Overview document. 

 



 

 6

It is important to note that these are requirements of the NEESgrid system taken as a 

whole. Section 1.3 details the NEESgrid components developed by the SI team and 

explains how each component maps to the requirements in this section. 

 

Table 1.  
System requirements (subdivided by functional category) 

Group A:  Collaborative Project Design and Planning 

General 
Description 

The first stage in the research process is to take an idea and develop it 
informally through discussions with colleagues to formulate a study topic 
and research question. The next step is to discover and document what 
is known about the topic, including reviewing published research results 
and data that could be used to formulate hypotheses relating to the 
research question. Then, building upon what is known, the researchers 
decide upon a unique study that would add to the body of knowledge in 
the field, and begin the process of project planning. Typically, this 
process includes deciding with whom to collaborate, what facilities or 
other resources are required to conduct the study, how long it will take, 
and what it will cost. NEESgrid supports this phase of the research 
process with specific tools for data discovery, collaboration and data 
viewing. 

A.1 
Repository 
Search and 
Discovery 

The metadata catalogs for the data repository and community simulation 
code repository are searchable against any of their fields, and a simple 
search tool is provided to help end users locate any testing information 
or information about simulation codes or modeling tools relating to the 
research problem. Locating published testing data and all associated 
metadata allows researchers planning new projects to evaluate every 
aspect of another study that was done independently by someone else 
at any one of the NEES facilities. Other information that is discoverable 
includes simulation codes or modeling tools (from the community 
simulation code repository), other NEESgrid participants with similar 
research interests (from the www.nees.org member database, and from 
the metadata catalog), and NEES facility availability and capabilities (for 
NEES Equipment Sites supporting online scheduling and inventory 
discovery). 

A.2 
Online 
Collaboration 

Support for online collaboration under NEESgrid is mediated by the 
Worktools and CompreHensive collaborativE Framework (CHEF) 
developed at the University of Michigan. These environments include a 
variety of resource management and information sharing capabilities. In 
addition to supporting asynchronous activities, the NEESgrid 
collaboration environment will support synchronous, or real-time 
collaboration through text chat, information sharing and 
videoconferencing. Multi-site videoconferencing sessions will be 



 

 7

scheduled on NEESgrid using multipoint control units dedicated to that 
purpose that are shared by all NEES users. Videoconferencing sessions 
will require Polycom™ systems (or fully compatible H.323 systems) at 
each site, and can be conducted by themselves or in association with 
other collaboration tools. The NEESgrid collaboration environment also 
includes an electronic laboratory notebook, which in addition to these 
tools can be used to document the planning and design process. 

A.3 
Data 
Analysis and 
Visualization 

The data repository and metadata catalog will contain information about 
both physical testing studies and numerical simulations that have been 
conducted as part of the NEES program. The NEESgrid collaboration 
environment will support viewing this data and metadata (as described 
in requirements groups C and E) so that scientists and engineers may 
review past experience in the community. 

 

 

Group B:  Setup, Observation and Monitoring of Tests at NEES Sites 

General 
Description 

For research projects that require physical testing at NEES Equipment 
Sites, the next phase of the project is preparation, which can take many 
months. Resources need to be scheduled, specimens designed and 
built, and equipment and sensors calibrated. Testing is complex and 
expensive, and must be completed within a narrowly defined time 
window. Thus, when tests are run they need to be monitored in real time 
(or near real time) to evaluate preliminary results and determine if the 
tests were successful. NEESgrid supports these steps in the research 
process with the CHEF tools as well as an electronic laboratory 
notebook, a telepresence system, and its collaboration and data-viewing 
environment. 

B.1 
Electronic 
Laboratory 
Notebook 

The NEESgrid laboratory notebook will help the researcher capture 
some of data during the preparation process. These data might include 
notes, equipment or sensor calibration data, and video captures of the 
specimen preparation process and placing of sensors. This process will 
not be automated, but it will be under the direction of the researcher. 
When the tests are run, preliminary results can also be included in the 
lab notebook as additional notes, still video captures, and/or simulation 
models images, again at the discretion of the researcher. The laboratory 
notebook is not intended to be a data archive, but will be a rich source of 
metadata that will help people uninvolved in the study to understand and 
evaluate that study for their future use. Examples of typical data that 
might be included in an e-Notebook are experimental notations, 
calibration data, data plots, and sample data tables. 

B.2 
Telepresence 
System 

The NEESgrid telepresence system (TPS) supports tele-observation. 
Tele-observation is focused on real-time and near real-time viewing of 
multiple data and streaming jpeg (video images) during tests conducted 
at NEES Equipment Sites. All streaming images are coordinated using a 
Linux based TP Server, while to achieve the performance required for 



 

 8

viewing sensor data during tests, the experimental  sensor data are 
processed and streamed to clients from the NEES-Pop using a CHEF 
interface.  In addition, sensor data is simultaneously saved on the data 
acquisition system. Additional data may be uploaded from the data 
acquisition system to the local data cache during the trial; at the end of 
the trial, data from all sensors are uploaded to the local data cache. This 
approach allows real-time viewing to be coupled with subsequent 
playback/review and posting of the data to the repository when the 
testing is completed using CHEF tools. Saving all sensor data on the 
data acquisition system while the test is running also allows for the test 
to run without loss of data in the event of a failure of the streaming data 
server or the network connecting the data acquisition system to the 
NEES-POP.  

B.3 
Data 
Streaming 

Remote observation of experiment results requires the streaming of 
experimental sensor data as it is being captured by the equipment site 
data acquisition system. It must be possible for a client to subscribe to 
one or more data streams, and correspondingly it must be possible for 
the equipment site to control access to data streams, to be able to 
generate "virtual" data channels (to accurate server side data filtering, 
and data reduction operations). 

B.4 
Data-viewing 
Environment 

Experiment data and metadata viewing tools (described in requirements 
group E) must be accessible during and immediately following an 
experiment so that users may determine whether or not the experiment 
was successful. The viewing perspectives can include numerical data, 
graphical representations or video data, and all perspectives are time 
synchronized. 

B.5 
Telecontrol 
 

The NEESgrid Telecontrol Protocol and Service (NTCP) supports the 
control of physical experiment equipment and computational simulations 
by remote applications.  NTCP provides a common protocol to 
communicate with experiments running on heterogeneous hardware and 
software platforms and APIs to be used for integration with remote client 
processes and local control system (or simulation) interfaces. 

 

 

Group C:  Using the NEES Data Repository 

General 
Description 

Once the testing component of a project is complete, the test data and all 
associated metadata are posted to the NEESgrid data repository for 
further analysis and for use by all authorized users. The NEESgrid Data 
Repository is an important grid resource for supporting collaborative 
research involving testing. It supports access controls to limit use to the 
project participants, but each participant can access the data and 
metadata via a common interface. Once the study is completed and the 
data are released by the original owner(s) for general user access, the 
data repository becomes an invaluable resource for other researchers 
modeling phenomena based on the results of multiple independent tests 



 

 9

or developing new research hypotheses based on rectsults from prior 
studies. 
    The key element in a data repository is the metadata catalog. The 
metadata define the data and the circumstances surrounding their 
collection. They describe the numerical data formats and the sensors 
used in collecting them. They describe still and motion video data, the 
cameras used, and the formats for viewing the resulting images. The 
NEESgrid team has developed a metadata model that should ultimately 
serve as a community standard for specifying metadata in the repository. 
The general approach is to capture (“ingest”) essential information about 
a test (i.e. the metadata, as distinct from the data) from all the sources 
described earlier (i.e. chat sessions, the electronic laboratory notebook, 
structured metadata entries, and other NEESgrid resources described 
earlier. This, coupled with other information provided by the owner of the 
data, completes the detailed and documented information describing how 
a test was conducted and its outcome. The benefits of community-wide 
agreement on a metadata model are facilitated data discovery and 
access by (a) members of the technical field that conducted the tests, 
and (b) members of other technical fields who may also be interested in 
the results. This feature is key to realizing the NEES vision of promoting 
cross-domain experimental or numerical simulation research activities 
between, e.g., structural and geotechnical earthquake engineering. 
    The establishment of consensus-based community data standards 
and specifications is a complex task. The approach taken by the 
NEESgrid team is to agree upon a solid and usable data model 
specification for October 1, 2004, based on detailed interaction with the 
community, its research use scenarios, and available model data sets 
from research conducted using different NEES facilities. This approach 
provides a framework for a community-based process for agreeing upon 
and documenting modifications or extensions to the standard data model 
during the operational phase of the NEES Collaboratory (2004-2014). 
This process will be managed by the NEES Consortium, and will provide 
important flexibility to accommodate changes in the modes and types of 
earthquake engineering research conducted by the NEES community. 
    The data repository established during the integration phase of NEES 
is built upon on a rich set of APIs that makes it possible for future 
NEESgrid users to develop powerful custom interfaces to NEES data 
and metadata. Certain reference implementations of tools and user 
interfaces are provided as part of the integration phase. 

C.1 
Metadata 
Ingestion 
Tools 

Primary sources of metadata describing a test conducted at a NEES 
Equipment site are the electronic notebook, structured metadata, and 
additional free form notes provided by the experimenter.  
Metadata ingestion tools provide the capability to excerpt information 
from the electronic notebook and use it to populate the metadata model.  
Metadata is also developed in highly structured formats such as XML-
based formats, and ingested into the repository though format 



 

 10

translation. The SI will provide a reference implementation of data 
ingestion for a set of example formats. 
A simple free-text web form is provided to capture additional comments 
from the PI or other members of the research team and insert them into 
the metadata model.  

C.2 
Data 
Discovery 
and Access 
Tools 

These tools facilitate finding physical testing or simulation data (and all 
descriptive metadata) of interest to a researcher that was previously 
published by a different researcher. They allow users to search any 
element or combination of elements in the metadata catalog, and access 
the data for collaborative viewing or analysis in the CHEF environment. 

C.3 Curation 
Management 
Tools 

The data repository is curated, and tools are provided to ensure that all 
information is organized, classified, indexed, moved, linked, annotated, 
versioned, archived, and secured. The tools represent an integration of 
best-of-breed collection-management tools augmented with specialized 
tools for specific data, as required. The tools support the activities of the 
repository curator, who will be responsible for verification and validation 
of data published in the repository. 

 

 

Group D.  Using the Numerical Simulation Tools and Repository 

General 
Description 

NEESgrid will facilitate researchers’ remote shared access to 
experimental equipment and data, will facilitate efficient 
communication between researchers, and will provide a powerful 
collaborative environment for modeling and simulation. This section 
describes NEESgrid components supporting research based on 
computational simulation techniques. 
    The NEESgrid simulation effort includes several components 
supporting the goal of consolidating computational simulation tools 
from the earthquake engineering community into a community code 
repository of tested and capable software tools. The simulation effort is 
oriented towards incorporating existing software in the earthquake 
engineering field into NEESgrid as a means of improving 
understanding, accessibility, and use of these tools by a broader 
community of earthquake engineers.  
    NEESgrid simulation activities include gathering of community tool 
information, development of a community software repository, 
demonstration and documentation efforts on selected software tools, 
and identification and implementation of enhancements for key 
applications in the support of improved NEESgrid system usability. 
The grid components of the system will support secure single login 
access to a variety of high performance computing and storage 
systems available to grid users, for example through the National 
Center for Supercomputing Applications.  There are no guarantees 
that NEES researchers will have access to these facilities – they must 
request allocations through the normal channels – but the NEESgrid 



 

 11

collaboration environment allows simulation code to be run using Grid 
mechanisms to involve external computational and storage resources.  
For example, a reference implementation will demonstrate the system 
calls needed to transfer data from the NEES repository to a TeraGrid 
partner site and vice versa.  

D.1 
Community 
Code 
Repository 

The NEESgrid team will design, develop, and deploy a software 
repository of selected simulation tools for earthquake engineering 
applications.  Metadata will be provided about the simulation software 
functionality, platform, and verification/validation criteria, so that the 
data repository’s browsing and search functions can be used to locate 
appropriate simulation software. 

D.2 
Reference 
Documentation 

The NEESgrid team will develop reference documentation for the 
community software repository to be used a means to educate and 
orient NEESgrid users, engineering practitioners and the general 
public on the use of the repository. 

D.3 
Portal 
Interface 

The NEESgrid team will design and develop community-motivated 
software enhancements that will add value to representative 
community codes, e.g., developing a portal interface for an earthquake 
engineering simulation tool such as the OpenSEES framework 
(opensees.berkeley.edu). 

 

 

Group E.  Using the CHEF Framework for Analysis and Sharing of Results 

General 
Description 

A NEES project can generate large quantities of text, graphics, video 
and numerical data. NEES users need a framework for accessing, 
analyzing and sharing these data and analytical results. NEESgrid 
provides a collaborative environment customized to serve the needs of 
the NEES user communities. The collaborative framework is built upon 
the WorkTools environment developed at the University of Michigan, 
extended into a general purpose comprehensive collaborative 
framework called CHEF. 
 The CHEF environment is used in the NEESgrid collaboratory to allow 
earthquake engineers to configure a virtual workspace to fit their 
particular needs. This includes selection of specific collaboration and 
research tools, such as electronic lab notebook, data archive search, 
email archive, or visualization tools, and specification of the appearance 
of these tools within the collaborative workspace. In addition to the 
collaborative workspace, individual engineers have their own personal 
workspaces that they can customize to meet their own needs. A key 
strength of the CHEF approach is the reliance on open source 
technology and standards so that additional tools can be quickly 
integrated with existing tools. 

E.1 
Web-based 
Collaboration 

These tools are customizable by users and support scheduling, 
announcements, task management, information resource management, 
discussion spaces, shared presentations, notification services, email 



 

 12

Tools group management, email archives, and laboratory notebooks. 
E.2 
Grid-enabled 
CHEF 
extensions 

These extensions support security/authentication (useful when signing 
on to multiple secure resources), resource discovery (e.g., from the data 
repository or other data resources on NEESgrid), and directory services 
(e.g., for locating collaborators) for users within the collaborative 
environment. 

E.3 
Data Viewer 

The data viewer is designed to provide time-synchronized viewing of 
data from multiple perspectives, and representing multiple data types. 
This tool takes inputs from repository data; the user selects the 
experiment, the channels (data and/or video); the user chooses plot 
types; and the results are displayed in a tiled format showing time-
synchronized plots of selected channels (or time synchronized video). 

E.4 
End User 
Application 
Integration 

The CHEF-based, NEESgrid collaborative environment supports basic 
and advanced application integration into the framework. Any existing 
application that is in the form of a web page or a web application can be 
easily incorporated into a personal end user space or shared with other 
collaborators. The CHEF system provides well-defined APIs and service 
interfaces—along with corresponding documentation—to allow the 
integration of advanced applications using multiple NEESgrid services 
and resources. 

 

 

Group F.  Use of NEESgrid by Practitioners 

General 
Description 

Practitioners are frequently engaged in research and testing activities 
with earthquake engineering researchers. In addition, they may want to 
review existing data and other information resulting from similar tests 
conducted by non-participating researchers. Finally, they may want to 
consult with an academic engineer while simultaneously viewing such 
data. NEESgrid will support all of these uses by practitioners through 
the tools other capabilities described in previous sections. 

F.1 
Telepresence 
Systems 

Collaborating practitioners (e.g., from a state Department of 
Transportation) can remotely view tests conducted at NEES Equipment 
Sites while collaborating with their research partners to view the 
streaming data (from sensors and video sources) and quickly analyze 
the results in near real-time (CHEF). 

F.2 
Electronic 
Lab 
Notebook 

The electronic lab notebook must allow users to enter an experiment’s 
entire design, specimen preparation, and test setup process. 

F.3 
Data 
Repository 

Discovery tools in the repository coupled with CHEF collaborative tools 
give practitioners the ability to identify and review similar or otherwise 
relevant results from prior tests for which they have access privileges.  

 

 



 

 13

Group G.  Managing and Supporting NEES Collaboratory Operations 

General 
Description 

Underlying the tools and interfaces described in this document is a 
sophisticated middleware environment architected to manage the 
interactions among resources and mediate the interfaces between end 
users and the resource grid. These resources include, e.g., the NEES 
Equipment Sites, the Data Repository, and various computational 
resources accessible by NEESgrid users. The details of the system 
architecture are available at www.neesgrid.org/NSFreview/ 
NEESgrid_SA_Feb15.2002.pdf; the system architecture specification 
document describes the grid services and protocols being used in the 
“background” to make it easy for users to conduct their research and 
other work. 
Scenario-based applications of NEES-POPs at the early adopter sites 
are described in the Early Adopter Plan document also located in the 
neesgrid.org library. 

G.1 
NEES-POP 

    In order to facilitate end user access and use of all the NEES 
Equipment Sites, a standard interface was designed to support the grid 
services specifically enabling the telepresence, collaboration, and data 
repository interfaces described above. This interface is called a NEES 
Point of Presence (NEES-POP), and the common services that reside 
on each NEES-POP are customized to the unique requirements of each 
Equipment Site. The end result is that the experience accessing and 
using one NEES Site is very similar to the experience using another. 

G.2 
Operations 
Center and 
Central 
Services 

 A critical component of the physical dimension of the overall 
collaboratory is system performance, including all the NEESgrid 
computing, storage and networking equipment, and the national 
broadband Internet-2 network that ties it all together. During the SI 
contract period, the SI team has provided an Operations Center that 
monitors the performance of all aspects of the NEESgrid and the 
national broadband network. The Operations Center maintains a help 
facility that can quickly diagnose and respond to user-generated 
requests. In addition to traditional operations center tasks, centralized 
services essential to NEESgrid operations provide capabilities needed 
for end users as well as system administrators. These services include 
the capability to issue X509 certificates for NEESgrid authentication, 
account management tools for user accounts across NEESgrid sites, 
and a credential repository for storing long term credentials needed for 
authentication using CHEF. Responsibility for providing these services 
will transition to the Consortium upon completion of the SI contract. To 
facilitate this transition, the SI has developed descriptions of each of 
these services including descriptions of any open source or off-the-shelf 
tools used by the SI to implement them. 

G.3 
Training 
Materials 

Learning to use the physical NEES resources using remote interfaces is 
an important component of the NEESgrid environment. During the final 
year of the integration phase, the NEESgrid team will conduct user 
training workshops to ensure that engineers know how to take full 



 

 14

advantage of the features of the NEES Collaboratory. The training 
materials will be made available to NEES Consortium for on-line use by 
all users for the life of the NEES Program. 

 

1.3. NEESgrid Components 

This section details the NEESgrid components developed by the SI team and explains 

how each component maps to the requirements defined in Section 1.2. 

1.3.1. Streaming Data Components 

Streaming data components allow remote applications to receive streaming data from 

experiments running within NEESgrid.  This supports system requirement B3 in Section 

1.2. 

1.3.1.1. Neesgrid Streaming Data Service NSDS Service   

The NSDS service runs on a NEESpop server at an Equipment Site.  It provides a 

standard network service interface to the (near real-time) streaming data generated 

by the site-specific data acquisition (DAQ) system. 

Unit tests for NSDS will involve development of test drivers and clients; the test 

driver will stream known sets of data points to known channels; the test client will 

subscribe to channels and record the data streams received to files. The results 

(source data and received data) will then be compared.  Since NSDS makes a best-

effort attempt to deliver data in a timely manner, some (yet to be specified) 

percentage of data loss will be considered acceptable. . Please note that NSDS is 

not the mechanism by which data is ingested into the data repository. The data 

repository gets ALL the data from the experiment (through the DAQ). NSDS clients 

observing the experiment (viewing some fraction of the “near live” data) may not see 

all of it, due to the best-effort basis. 

Work Flow test: Stream data from a driver through NSDS and view in the data 

Viewer (part of visualization efforts) 



 

 15

1.3.1.2. NSDS Client Libraries/APIs 

Administrative Client: Invokes the administrative interface of the NSDS 

Regular Client: Invokes services provided for the users of NSDS. 

Unit Tests:  See 1.3.1.1. 

1.3.1.3. NSDS Drivers and Plug-ins 

 Driver Interface: Handles connections to drivers and sends appropriate commands 

on behalf of the NSDS server.  

1.3.2. Teleoperation Control Components 

Teleoperation in NEESgrid is implemented using this model:  client applications 

(simulations) make requests using the NEESgrid Teleoperation Control Protocol 

(NTCP).  NTCP servers receive these requests, process them, and forward them on, via 

the use of plugins, to backend systems (control systems or simulations).  A plugin is a 

small piece of code specific to the particular backend system (hardware controller or 

simulation) in use at a site. 

1.3.2.1. NTCP Server and Client API 

The core NTCP server which, when used with a "plugin", is used to communicate 

with a backend control system (or simulation).  In the MOST experiment, three 

NTCP servers were used:  one at NCSA to handle communications with the 

simulation at NCSA, one at Colorado to handle communications with the Matlab 

application there (which in turn used xPC to control servo-hydraulics), and one at 

UIUC to handle communications with the Shore Western servo-hydraulic hardware 

there. 

1.3.2.2. NTCP Java Client Library 

A java class used by client applications to communicate with NTCP servers.  In the 

MOST experiment, the coordinating simulation used the NTCP java client library 

(indirectly, via the NTCP Matlab client library) to communicate with the NTCP 

servers running at UIUC, NCSA, and Colorado. 



 

 16

1.3.2.3. NTCP C Client Library 

A set of C functions used by client applications to communicate with NTCP servers.  

This performs the same function as the NTCP java client library, but provides an 

interface in the C programming language.  (Note:  this hasn't been written yet). 

1.3.2.4. NTCP C Gateway Plugin 

An NTCP plugin, written in java, that calls a set of C callback functions to 

communicate with some backend control system (or simulated control system) using 

a C API.  We will define and publish this C callback API; a set of functions that 

implements this API to communicate with a control system (or simulated control 

systems) is called an "NTCP C plugin".  So the C-gateway plugin is an NTCP java 

plugin that calls an NTCP C plugin, which in turn talks to some control system.  To 

test the NTCP C-gateway plugin, we'll also have to provide a "dummy" C plugin (just 

as we included a "dummy" java plugin for testing the NTCP server). 

1.3.2.5. NTCP Mplugin 

An NTCP plugin, written in java, that is used to communicate with Matlab backend 

simulations.  In the MOST experiment, the Matlab backend components (the 

simulation at NCSA and the application at Colorado) communicated with NTCP via 

the Mplugin. 

1.3.2.6. NTCP Matlab Client Toolbox 

A set of Matlab functions that call the NTCP java client API to communicate with an 

NTCP server (I think the implementation of this may also include some java 

functions in between the NTCP library and the Matlab functions).  In the MOST 

experiment, the coordinating simulation used this library. 

1.3.2.7. NTCP Matlab Backend Toolbox 

A set of Matlab functions that call the Mplugin java client API (the Mplugin actually 

implements its own grid service) to communicate with the NTCP server running on 



 

 17

the local NEES-POP.  In the MOST experiment, the simulation at NCSA and the 

application at Colorado used this library. 

1.3.3. Data Acquisition Subsystem 
  
The data acquisition (DAQ) subsystem provides tools and components for sites to 

integrate their laboratories into the NEESgrid. Included are a reference implementation 

in LabVIEW, and an API for them to use in their DAQ code. Also available are 

implementations in C for two other inexpensive DAQ devices, and a pure software 

implementation for use as example code. 

 

1.3.3.1. Data Acquisition Service 

The DAQ code runs two programs on the sites’ DAQ computer: The site-specific 

DAQ code, and a small server daemon to handle the TCP/IP connections to the 

driver. The server daemon manages the channel list (subscriptions), connection 

establishment and reestablishment, status propagation, and all remote queries. The 

DAQ code is written such that it can run even if the server daemon is not present or 

the network is down; connection handling and such are handled behind the scenes 

so as to minimize our impact on their experiments. 

While the reference implementation is in LabVIEW, others are included that speak 

the same protocol. We have written a tool that does an exhaustive test of protocol 

compliance, correctness and error handling; this will be posted to the web for sites to 

check their implementations as well as our own testing. 

1.3.3.2. DAQ Client Library/API 

The LabVIEW API provides functions to read and write metadata to disk, stream 

data to the driver/NSDS, perform repository uploads via FTP, save to disk, set DAQ 

status, etc. It is designed to be added to existing site-specific DAQ code with 

minimal effort and impact. 



 

 18

Code is included with the LabVIEW DAQ distribution to test its correctness and 

scalability, and can be run at will at any site. As an aid, we also supply a compiled 

NSDS simulator that plots the streaming data for sites not possessing a LabVIEW 

license. 

1.3.3.3. NSDS Driver 

The NSDS driver is a plug-in based driver model between the DAQ and the NSDS. 

Our DAQ test tool will also handles testing for the driver. 

 

1.3.4. Data Management Services 

NEESgrid data services provide the ability to ingest, manage, retrieve, and archive data 

and metadata in a secure, collaborative environment. Data services are provided as a 

set of core OGSI (Open Grid Services Infrastructure) services providing applications 

with the ability to manage data and metadata objects and resources.  In addition, a set 

of reference end user applications have been built on those services. The Open Grid 

Services Infrastructure (OGSI) is a set of WSDL specifications defining standard 

interfaces, behaviors, and schema for grid computing consistent with the OGSA. OGSA, 

which stands for Open Grid Services Architecture, provides standard communication 

protocols and formats. OGSA represents the means to build truly large-scale, 

interoperable grid systems. NEESgrid services are built upon this framework. 

 

Data services are packaged as part of the data and collaboration package. Testing of 

the packaging process for NEESgrid data tools will be accomplished in the context of 

testing the data and collaboration package(s). 

 

The NMDS implementation provides a suite of unit tests that verify API correctness as 

well as metadata repository implementation behavior under a variety of error conditions 

as well as ideal conditions. The test is run in two stages, first directly against NMDS's 

JDBC (Java DataBase Connectivity) implementation (including the Mysql-specific 

features), and then against the web service implementation of the same API. 



 

 19

 

Another set of tests evaluate NMDS performance under various load volumes both in 

terms of rate of access and number of simultaneous clients. These extend the tests 

used for the preliminary performance analysis completed in Spring 2003. 

1.3.4.1. NEESgrid Metadata Service  

The NEESgrid metadata service (NMDS) implements repository functions 

associated with metadata, including metadata storage, retrieval, search, security, 

and provision of an API. This supports CHEF-based metadata ingestion, browsing, 

and search end user capabilities, as well as supporting archiving and application 

access to metadata. It also provides the file management system (described below) 

with a way to store and retrieve metadata about files and file transfers.  

The NEESgrid Metadata Service (NMDS) and NEESgrid File Management service 

(NFMS) implement data repository functions.  API correctness tests will be included 

for both successful and error conditions.  In the case of NMDS, the test suite is run 

in two modes, 1) direct JDBC access to a test repository database and 2) remote, 

web-service access to the same test repository database.  The database is a Mysql 

database configured the same way as it is in the release.  NFMS uses NMDS, so the 

successful completion of its test suite depends on successful completion of the 

NMDS test suite. 

1.3.4.2. File Management Service 

The NEESgrid file management service (NFMS) implements repository functions 

associated with data, including sensor data, images, video, and documentation. 

These functions include security, file transfer, naming and directory services,  linking 

files to metadata, and provision of an API. This supports CHEF-based data 

ingestion, browsing, and data viewer interfaces. 

The NFMS implementation provides a suite of unit tests that verify API correctness 

as well as NFMS implementation behavior under a variety of error conditions as well 

as ideal conditions. Another set of tests evaluates NFMS performance under various 

load volumes both in terms of rate of access and number of simultaneous clients. 



 

 20

1.3.4.3. Repository Browser Teamlet 

The NEESgrid repository browser teamlet provides a user interface to the NEESgrid 

repository. It allows the user to upload, download, browse, and search data and 

metadata. 

A set of test scripts walk a tester through an exhaustive set of scenarios for the 

browser, exercising all of the user interface features and providing a description of 

the expected behavior at each point. 

 

1.3.4.4. Metadata Ingestion Tool 

The NEESgrid metadata ingestion tool provides a means for uploading metadata to 

the repository in one of the supported metadata formats. It includes a suite of tests 

that not only verify correct behavior under error conditions, but also upload test 

metadata, re-download the metadata, and check that the correct metadata has been 

stored in the repository. This is a multi-step process which tests every attribute of 

every object to make sure that the metadata is correct. A set of test metadata is 

provided that exhaustively exercises the repository's object-oriented model of 

metadata structure. 

1.3.4.5. Central Archiving Service (“central repository”) 

The NEESgrid central archiving service implements repository functions associated 

with long-term preservation, including mirroring of data and metadata as well as 

tertiary storage strategies. This central repository will be able to harvest data and 

metadata from sites and move it into the tertiary storage environment while 

maintaining the ability to securely retrieve the objects. A set of automated tests will 

verify that data and metadata can be retrieved at every stage in the archiving 

process without any loss of data. 



 

 21

1.3.5. CHEF and Worktools 

CHEF (www.chefproject.org) and Worktools provide an online collaborative environment 

as part of the NEESpop distribution.  CHEF is developed and supported by the 

University of Michigan. 

1.3.5.1. Chef Base Distribution 

The CHEF Base distribution provides a number of capabilities “out of the box” 

including (1) Schedule Tool, (2) Threaded Discussion Tool, (3) Flat Discussion Tool, 

(4) Live Chat Tool, (5) Resource Tool, (6) an I-Frame tool (capable of displaying web 

pages), and (6) a set of site administration tools. 

These tools are tested as part of each release of CHEF by University of Michigan 

personnel.  For each version of CHEF which is integrated into the NEESGrid toolset, 

the University of Michigan will provide a copy of the testing report for that version of 

CHEF. 

1.3.5.2. Chef Grid Services Package 

The Chef Grid services package adds the following components: (1) Grid Certificate 

Display Tool, (2) Java CoG based GridFTP (adapted from Indiana University), and 

(3) An application Service which provides CHEF applications to Grid credentials. 

1.3.5.3. Chef MySQL package 

CHEF supports MySQL as part of the base release.  As part of the acceptance 

testing for each release of CHEF which is integrated into NEESGrid, the standard 

CHEF test scripts (1.3.5.1) will be run on an installed CHEF configured to use 

MySQL. 

1.3.5.4. NEESgrid Visualization Tools 

The University of Michigan also provides two visualization tools: (1) stored data 

visualizer which retrieves data from the data repository and (2) a streaming data 

visualizer which interacts with the NSDS Streaming data protocol.  The stored data 

visualizer can display several different types of channels including: (1) stored video 



 

 22

(only formats supported by the Java Media Framework), (2) scalar floating point 

data, and (3) two-dimensional structural analysis model data.  The stored visualizer 

shows multiple synchronized streams at the same time in its interface, allowing for 

the synchronization of video and data.  The streaming viewer only supports scalar 

channels.  The NEESpop as shipped in version 2.0 will include sample data both 

streaming and stored which demonstrates all of the capabilities of the tools.  This 

sample data is also provided and will be used as part of the testing script for these 

tools. 

1.3.6. Telepresence Video Components 

The functionality and test procedures for TelePresence Video will be provided as a 

script that testers can follow, walking them through a specific scenario of logging in, and 

opening the various options associated with near realtime imaging from a TP site, it will 

exercises every interface feature and contains specific instructions for logging errors.   

 

In general, functionality testing for this group of NEESgrid software services is 

accomplished simply by logging into services and verifying that the requisite objects are 

available or present.  For example, to test streaming video the evaluator will simply login 

to the TP server using a WWW browser and confirm the presence of a streaming jpeg 

image in their browser window. In addition, custom programs are provided to measure 

and calibrate system performance from the TP Administrative Console.  A script for 

these actions will be included as part of the tests described above.  

1.3.7. Electronic Notebook 

The electronic notebook is a component which allows experimenters to capture and 

share data during the experiment preparation phase, experiment running phase, and 

post trial phase akin to a written laboratory notebook.  Data might include notes, 

equipment or sensor calibration data, and video captures of the specimen preparation 

process and placing of sensors. 



 

 23

1.3.7.1. E-Notebook Unit Test 

The functionality and test procedures for the Electronic Notebook will be provided as 

a script that testers can follow, walking them through a specific scenario of logging 

in, creating entries, appending information, uploading and downloading files, storing 

frame captures from the TP Video systems etc. that exhaustively exercises every 

interface feature and contains specific instructions for logging errors.   

In general, functionality testing for this group of NEESgrid software services is 

accomplished simply by logging into services and verifying that the requisite objects 

are available or present.  For example, to test capturing a video image and 

annotating the evaluator will simply login to the E-Notebook using a WWW browser 

and select the appropriate option, fill out the metadata annotation form, select the 

video source and confirm the creation of the entry in the E-Notebook in their browser 

window.  

1.3.8. Simulation Services 

The simulation services will be built upon the Open System for Earthquake Engineering 

Simulation (OpenSees).  OpenSees was developed by the Pacific Earthquake 

Engineering Research Center as an open-source software framework for simulation of 

structural and geotechnical systems.  It has the capability for nonlinear (material and 

geometry) static and dynamic analysis using a variety of beam-column and continuum 

elements and a library of material models.  OpenSees is a modular, object-oriented 

software that is extensible for providing new types of numerical models (e.g. elements 

and materials), analysis procedures, and interfaces (such as to databases and NTCP). 

1.3.8.1. Community Software Repository 

A software repository for OpenSees will be created to allow for continued 

development of the framework by the earthquake engineering community.  

NEESgrid facilities will be utilized for a community-based simulation software 

development process, including a roadmap, project and bug tracking systems, user 

mailing lists, discussion forums, and processes for submission of material from the 

community.  Browsing and searching for OpenSees API’s, source code and 



 

 24

documentation, including examples and tutorials will be supported by the data 

repository’s functionality. 

1.3.8.2. Portal Interface 

The NEESgrid simulation services will include a portal interface for community 

software in the code repository using the NEESgrid portal framework.  The portal 

allows for secure interactive job submission, batch job submission, status and 

monitoring, and a service to configure a simulation execution. 

1.3.8.3. Metadata Definition and Data Interfaces 

A data schema for simulation models and simulation results will be used for 

archiving in the NEESgrid data services.  The OpenSees API will be extended to 

provide interfaces with the NEESgrid data repository for models and simulation 

results. 

1.3.9. Centralized Services   

As part of NEESgrid, we operate servers that provide live information about NEESgrid, 

including health and Status (based on Big Brother Monitoring), NEESgrid wide 

centralized Information Server (GIIS server), custom information providers, and access 

to a Certification Authority etc. Please see write up in Table 1, Section G.2. 

1.3.10. How Components Map to Requirements 

Table 2 shows how the components listed earlier in this section relate to the system’s 

functional requirements from Table 1. 

 

Table 2.  Components Mapped to Requirements 

Component… Meets Requirements…  

NSDS Service B.2, B.3, F.1 

NSDS Client Libraries/APIs  B.2, B.3, F.1 

 NSDS Drivers/Plug-ins  B.2, B.3, F.1 

NTCP Service  B.5 



 

 25

NTCP Client Libraries/APIs  B.5 

NTCP Drivers/Plug-ins  B.5 

DAQ Code   B.2 

DAQ Library APIs  B.2 

Metadata Service  A.3 

File Management Service  B.2 

Repository Browser teamlet  A.3, B.2. B.4, D.1 

Metadata ingestion tool  A.3, C.1 

Central archiving service  A.3, B.4, C.1,C.2, E.2, F.3 

Chef Base Distribution A.2, C.2, E.1, E.2, F.1 

Chef Grid Services A.2, C.2, E.1, E.2, F.1 

Chef MySQL A.2, C.2, F.1 

Data Visualization Tools A.3, B.2, B.4, C.2, E.3 

Telepresence Components (NTCP, NSDS and CHEF 
tools tested elsewhere)  

B,2, F.1 

Electronic Notebook  B.1, A.2, C.1, F.1, F.2 

Simulation Repository  A.1, D.1, D.2, E.1 

Simulation Portal D.3, E.4 

Simulation Metadata A.3., C2 

Centralized Services G.1 

 

1.4. Test Strategy 

The overall strategy for the NEESgrid acceptance testing is to verify that the NEESgrid 

components provided by the SI team meet the requirements defined in Section 1.2.  

The SI will develop and document the formal test procedures and tools to be applied for 

each software module.  These will be reviewed by the Consortium.  The testing itself will 

be carried out by the SI and results submitted to the Consortium for review.  

 

NEESgrid acceptance will consist of three types of tests: 



 

 26

• Unit/functional test for NEESgrid specific components.  These tests are 

developed as part of the normal component development process.  Unit tests are 

run throughout software development and prior to any software release.  Unit 

tests validate compliance with all documented interfaces and also include stress 

testing, scalability testing, and testing of boundary cases where appropriate.  

Acceptance tests for NEESgrid include unit tests for components developed 

explicitly for NEESgrid (e.g., NSDS, NTCP, NMDS, NFMS).  Components 

developed outside the scope of NEESgrid (e.g., NMI, CHEF) are represented in 

the Acceptance Testing Plan by workflow, gap, and packaging tests.   

• Workflow/integration testing.  These tests will cover specific system requirements 

described in Section 1.2, such as registration and delivery of streamed data, and 

search and download of data in a repository.  In performing these tests, we will 

leverage current and planned experiments that are being performed in 

collaboration with earthquake engineering sites (MOST and other experiments, 

reflecting the distinct natures of structural, geotechnical, and tsunami 

experimentation).  The acceptance testing protocol will require the SI to identify 

to the Consortium what integration tests will be covered as part of the experiment, 

and to provide for each integration test a brief summary as to the test status. 

• Gap testing. Gap tests are equivalent to workflow/integration tests in all ways 

except for the context in which they are executed. Specifically, Gap tests are not 

conducted as parts of experiments performed in collaboration with earthquake 

engineering sites. (While Workflow/integration testing should cover most relevant 

usage scenarios, there will likely be integration tests that will not be covered 

under current or planned experiments.  In these cases, the missing test cases 

will be documented via agreement with the SI and Consortium, and the specific 

tests conducted by the SI.) 

• Packaging testing.  Packaging tests cover issues related to the form in which 

NEESgrid components are delivered to the NEES Inc. Of particular importance 

are the capabilities provided for installing, and verifying installation of, software 

components. 

 



 

 27

Not all tests are simple pass/fail evaluations – some need to be performance related.  

That is, assuring that performance falls within acceptable ranges – established as part 

of the test procedures – will determine whether or not the component is acceptable. 

 

Individual tests may be witnessed and test results will be reviewed and approved by 

NEES Consortium, Inc. as represented by the CONSORTIUM awardee and the IT 

Committee (a standing committee appointed by the Board of Directors). 

The SI team will maintain records of all acceptance test results. 



 

 28

2. ACCEPTANCE PROCESS 

2.1. Personnel 

The Consortium’s IT Committee will be charged with evaluating the acceptance test 

results and with final acceptance of both NEESgrid components and the overall 

NEESgrid system.  It may elect to assign a subgroup of the committee membership for 

this task.  However, final system acceptance shall be done by the entire committee. 

 

2.2. Procedure 

Acceptance Test results shall be evaluated using the following procedure: 

• The SI provides the Consortium with detailed Acceptance Test Procedures and 

the Consortium accepts them. 

• The SI alerts the Consortium of an upcoming test 

• The Consortium’s IT committee chair or his/her designee observes the test if and 

as desired 

• The SI produces an Acceptance Test Report and submits it to the Consortium for 

review 

• The Consortium formally reviews the Acceptance Test Report and produces a 

written review report indicating acceptance or non-acceptance. 

 

2.3. Actions 

Each functional component’s Acceptance Test Procedure shall be performed by the 

necessary SI staff using the necessary resources.  An Acceptance Test Report will be 

produced for each of the component acceptance tests.  These results will be evaluated 

as described above. 



 

 29

2.3.1. Action upon Success 

If upon evaluation the evaluation team finds that a functional component has 

successfully passed its acceptance test, that component shall be deemed accepted.  

The SI can then proceed with closure for this component, including final release and 

training as required. 

2.3.2. Action Upon Failure 

If after evaluation the acceptance team finds that a component has not passed its 

specified acceptance test, the SI shall be so notified and will be provided with a 

description of deficiencies.  A checklist will be provided, based on the requirements 

agreed to by both the Consortium and the SI.  The SI shall then proceed with further 

development and refinement and produce a revised version of that component.  The 

revised version shall be retested and re-evaluated. 



 

 30

3. HIGH LEVEL TEST PLAN 

3.1. Resources 

Each individual acceptance test will require specific resources in terms of computer 

hardware, software, NEES equipment, etc.  These required resources will be specified 

as part of each individual Acceptance Test Procedure. 

3.2. Schedule 

Individual Acceptance Test Procedures will be developed incrementally by the SI and 

reviewed/approved by the Consortium as soon as possible (with the final procedures to 

be defined no later than May, 2004).  Tables 3, 4, and 5 indicate the dates associated 

with each incremental set of procedures .  

 

Incremental testing of individual NEESgrid functional components will be done as soon 

as possible during the time period August 2003 through August 2004. Specific dates for 

each procedure will be proposed by the SI as part of the procedure definition activity. 

 

Table 3.  Developing Procedures for Unit Tests 

Procedure for Component… Due SI Lead 

NSDS Service 1/31/2004 Laura Pearlman 

NSDS Client Libraries/APIs 1/31/2004 Laura Pearlman 

NSDS Drivers/Plug-ins 1/31/2004 Paul Hubbard 

NTCP Server and Java Client Library 10/15/2003 Laura Pearlman 

NTCP C Client Library 12/15/2003 Lee Liming 

NTCP C Gateway Plugin 12/15/2003 Lee Liming 

NTCP Mplugin 12/15/2003 Lee Liming 

NTCP Matlab Client Toolbox 12/15/2003 Erik Johnson 

NTCP Matlab Backend Toolbox 12/15/2003 Erik Johnson 

DAQ Code  09/30/2003 Paul Hubbard 

DAQ Library APIs 09/30/2003 Paul Hubbard 



 

 31

Metadata Service 09/30/2003 Joe Futrelle 

File Management Service 10/30/2003 Joe Futrelle 

Repository Browser teamlet 11/30/2003  Joe Futrelle 

Metadata ingestion tool 11/30/2003 Joe Futrelle 

Central archiving service 01/30/2004 Joe Futrelle 

Chef Base Distribution 11/30/2003 Chuck Severance 

Chef Grid Services 11/30/2003 Chuck Severance 

Chef MySQL 11/30/2003 Chuck Severance 

Data Visualization Tools 11/30/2003 Chuck Severance 

Telepresence Components (NTCP, 
NSDS and CHEF tools tested 
elsewhere)  

11/30/2003 Nestor Zaluzec 

Electronic Notebook 11/30/2003 Nestor Zaluzec 

Simulation Portal Interfaces 3/31/2004 Greg Fenves 

OpenSees API to Data Services 3/31/2004 Greg Fenves 

Data/Metadata 
Repository Services  

1/30/2004 Joe Futrelle  

 

Table 4 lists the dates for specifying the procedures associated with workflow/ 

integration and gap tests.  The SI team does not know at this time which of the workflow 

tests will be conducted as part of future large-scale collaborative experiments and which 

will be conducted separately.  It will be specified as each test procedure document is 

completed, if possible, but may be deferred until closer to time that the test plan is 

executed. 

 

Table 4.  Developing Procedures for Workfllow/Integration and Gap Tests 

Procedure for Function… Due SI Lead 
Locate, retrieve, and view relevant experiment 
data and/or simulation code for a given research 
problem 

12/15/2003 Joe Futrelle 
Chuck Severance 

Locate NEESgrid participants with similar 
research interests 

12/15/2003 Bill Spencer 

Identify NEES facilities (availability and 
capabilities) relevant to a given experiment 

12/15/2003 Doru Marcusiu 
Laura Pearlman 

Chat with other NEESgrid users (text-only) 12/15/2003 Chuck Severance 



 

 32

Share documents and images with other 
NEESgrid users 

12/15/2003 Nestor Zaluzec 
Chuck Severance 

Set up and participate in a videoconference 12/15/2003 Erik Hofer 
View numerical, video, and simulation data from 
published studies using CHE 

12/15/2003 Chuck Severance 

Select and view multiple channels (data and/or 
video) from experiment results side-by-side 

12/15/2003 Chuck Severance 

View multiple channels (data and/or video) with 
time synchronization (see esp. requirement E.3; 
also A.3 and B.4) 

12/15/2003 Chuck Severance 

Enter pre-experiment data into an electronic 
notebook (e.g., notes, equipment or sensor 
calibration data, video captures of specimen 
prep. process, etc.) 

12/15/2003 Nestor Zaluzec 

Enter preliminary or intermediate experiment 
results into an electronic notebook (e.g., data, still 
video captures, simulation model images) 

12/15/2003 Nestor Zaluzec 

View near-real-time data from a physical 
experiment 

12/15/2003 Paul Hubbard 
Laura Pearlman 

View near-real-time video from a physical 
experiment 

12/15/2003 Nestor Zaluzec 

Transport and store sensor data from a running 
experiment (see requirement B.2 for details) 

12/15/2003 Paul Hubbard 
Laura Pearlman 

Establish a client subscription to one or more live 
data streams 

12/15/2003 Laura Pearlman 

Produce a “virtual” data channel (server side data 
filtering/reduction/etc.) 

12/15/2003 Paul Hubbard 
Laura Pearlman 

Use a tool to excerpt information from an 
electronic notebook and use it to populate the 
metadata model 

12/15/2003 Joe Futrelle 
Nestor Zaluzec 

Use a free-text web form to capture user 
comments and insert them into the metadata 
model 

12/15/2003 Joe Futrelle 
Chuck Severance 

Use a tool to allow entry of structured metadata 
and populate the metadata model 

12/15/2003 Joe Futrelle 

Use a tool (or set of tools) to organize, classify, 
index, move, link, annotate, version, archive, and 
secure data in the data repository 

12/15/2003 Joe Futrelle 

Access and browse the contents of the simulation 
code repository 

3/31/2004 Greg Fenves 

Use the simulation portal to search for 
documentation, report bugs, submit new task 
proposals 

3/31/2004 Greg Fenves 

Perform simulations using the portal, storing 
models and results in the data repository 

3/31/2004 Greg Fenves 



 

 33

Search simulation repository for models and 
results  

3/31/2004 Greg Fenves 

Customize the CHEF collaboration interface for a 
given user 

12/15/2003 Chuck Severance 

Use the following collaboration environment 
features via CHEF: scheduling, announcements, 
task management, information resource 
management, discussion, shared presentation, 
notification, email group management, email 
archive, and laboratory notebook 

12/15/2003 Chuck Severance 
John Leasia 

Use Grid security to authenticate (a user) to 
multiple resources in a single session via CHEF 

12/15/2003 Laura Pearlman 
Chuck Severance 

Use Grid information services to identify 
computation and storage resources via CHEF 

12/15/2003 Sridhar Gullapali 
Chuck Severance 

Integrate a web page and a web-based 
application into the CHEF environment 

12/15/2003 Chuck Severance 

Locate API and interface details describing how 
to integrate a complex application with the CHEF 
environment 

12/15/2003 Chuck Severance 

Remotely view an experiment conducted at one 
or more NEES equipment sites while 
collaborating with research partners to view the 
streaming data (from sensors and video sources) 
and quickly analyze the results in near real-time 

12/15/2003 Sridhar Gullapalli 
Carl Kesselman 

Review the entire design, specimen preparation, 
and test setup process for an experiment by 
accessing electronic notebooks 

12/15/2003 Dan Abrams 
Bill Spencer 

Run the same experiment at two distinct 
equipment sites using the same user interface 
tools (including especially data and metadata 
input and retrieval). 
(NOTE: The interfaces should be identical.) 

12/15/2003 Sridhar Gullapalli 
Bill Spencer 

Locate and view online training materials 
designed for engineers and scientists. 

12/15/2003 Cristina Beldica 

 

Testing procedures for the software packaging will be due in January of 2004, as shown 

in Table 5. 

Table 5.  Developing Procedures for Unit Tests 

 

Procedures for … Due SI Lead 

Software Packaging 01/15/2004 Doru Marcusiu 

 



 

 34

3.3. General Procedures 

3.3.1. Unit Tests 

Unit acceptance tests will be integrated with the regression testing procedures used 

during component development and software release.  As described above, a testing 

procedure and testing report will be created for each component.  

 

Unit tests will be automated, and to the extent possible the testing methodology used by 

the Globus Toolkit (summarized here) will be used when appropriate.  Globus uses two 

different testing mechanisms: one for modules that are primarily C and one for modules 

that are primarily Java.  These two mechanisms are unifed by the joint use of 

Tinderbox, which provides a common reporting interface for both mechanisms.  

 

For our C modules the Globus team uses a home-made testing framework based on a 

Perl script known as "test-toolkit".  The test-writer's interface is described at 

http://www.globus.org/gt2.4/test-toolkit.html. (This page was developed for use with 

iVDGL GLUE testing, which is why the specific tests it refers to are GLUE tests.) 

 

Java module tests are based on the JUnit framework and can be run from within the 

component hosting environment.  JUnit is a framework for developing unit tests for Java 

classes. JUnit framework provides a base class called TestCase that can be extended 

to create a series of tests for the class you are creating, an assertion library used for 

evaluating the results of individual tests, and several applications that run the tests.  

Tests can be run both on an hourly and on a daily basis depending on their criticality 

and how long it takes to run them.  We have developed extensions to both the hosting 

environment and junit to facilitate Grid-specific testing. The JUnit extension allows us to 

test both collocated and remote servers easily without the test writers having to modify 

their tests.  The ant extensions are used for stress testing, which allows the tests to run 

in multiple threads and from multiple JVMs without the test writers having to modify their 

tests. We also have a number of test conventions and patterns that allow us to easily 

run subsets of the tests (e.g., only run security tests or Open Grid Services 



 

 35

Infrastructure compatibility tests).  Tinderbox is used as a centralized repository for all 

the test reports, but the presentation layer is not as good as it could be.  Since all our 

test reports from JUnit are in HTML and XML we could easily customize better 

stylesheet conversions, which is something the SI plans to provide. See 

http://choate.mcs.anl.gov:8080/tinderbox/OGSA/status.html 

for a sample of Tinderbox output. 

 

Test can be written using the Java JUnit interfaces and the API extensions we provide 

for stress tests and remote server tests.  This testing environment requires a source 

download of GT3 core to run the test as well as the junit.jar binary from junit.org. 

 

3.3.2. Workflow/Integration and Gap Tests 

Integration/Workflow tests evaluate specific cross-component functionality with respect 

to realistic deployment environments.  Integration/Workflow tests will include 

infrastructure services that are part of the NEESgrid system to be delivered to the 

Consortium (e.g., the centralized NEESgrid repository). 

 

As described above, Integration/Workflow tests will be aligned to the extent possible 

with ongoing NEESgrid activity.  Specific workflows to be tested will be documented, 

and a report will summarize the results of each test.  Any significant usage modalities 

not covered under this process will be identified and specific test cases developed to 

address the omissions. 

 

To date, two integration work flow efforts have debuted.  

1) The Early Adopter Demonstration: Three equipment sites, the University of 

Nevada, Reno, Oregon State University and Rensselaer Polytechnic Institute 

were brought up to release 1.0/1/1 of the NEESgrid software. 

2) The MOST Experiment: Two new Equipment Sites (UIUC) and U of Colorado are 

being brought up to pre Version 2.0 release of NEESgrid. We are debuting the 

Control Protocol, additional Collaborative tools and Data Management Services. 



 

 36

3.3.3. Packaging Tests 

The SI deployment team will develop and execute the software packaging acceptance 

test plans. These test plans will ensure that the NEESgrid software suite can be 

installed, configured, and uninstalled on specified target systems in a reasonable 

manner. 

 

The packaging test plan will largely involve performing the above actions with the 

software suite as released by the SI team on one or more target systems.  The test 

plans will assume that all target systems meet the NEES-POP system requirements and 

other SI requirements as publicly specified. 

 

After the packaging acceptance test plans are approved by the Consortium, the 

deployment team will notify the Consortium regarding when they may observe execution 

of the tests (should the Consortium wish to).  All tests will be conducted by the 

deployment team and all results will be documented and archived for later use. 

 


