

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853.

Technical Report NEESgrid-2002-05
www.neesgrid.org

(Whitepaper Version: 1.0
Last modified: September 26, 2002)

The NEESgrid Metadata Service API: Overview

Joe Futrelle1 Jeff Gaynor1

1 National Center for Supercomputing Applications, Urbana-Champaign, IL 61820

Feedback on this document should be directed to futrelle@ncsa.uiuc.edu

The NEESgrid Metadata Service API: Overview 2

The NEESgrid Metadata Service API: Overview
Draft whitepaper by Joe Futrelle and Jeff Gaynor. Version: 1.0. Last modified: September 25, 2002

1. Architecture
The NEESgrid Metadata Service provides access to metadata about a variety of entities,
such as experiments, researchers, apparatus, events, and facilities. The service is
designed to allow remote clients to browse, update, and otherwise manage metadata
objects representing these entities of interest. The metadata objects are represented in a
simple, consistent manner, which allows them not only to contain attributes of various
types, but also to make reference to other objects. The objects are also tracked through a
versioning system and protected through access control and object-level locking. Using
the metadata service, remote clients can retrieve full or partial information about objects,
request uploads and downloads of data files to and from the repository, and make full or
partial updates to objects.

The Metadata Service will run on the NEES POP at every site, in addition to a central
Metadata Service that will run at a central site. This document describes the capabilities
of the Metadata Service running on every site’s NEES POP, rather than the metadata
service at the central repository. The capabilities are described in terms of the client API.
The client API is an implementation of a generic object access API that can be interfaced
to arbitrary back-ends. In the server-side implementation of the object access API, the
back-end is the repository’s back-end RDBMS. In the client-side implementation, the
back-end is a network protocol based on HTTPS and XML which is used to communicate
with the Metadata Service. After its initial implementation, this protocol, which
resembles SOAP, will be able to be extended to become a SOAP-based service which
other clients can use. Initially, however, the only client that will use the client API is a
set of CHEF teamlets that will provide a user interface for data and metadata
management, and later for experiment management. Thus, the “client” is really a CHEF
server whose clients are end users. For the remainder of this document, “client” should
be understood to mean the CHEF server, except where otherwise indicated.

2. Client API
The client API is a Java class library providing remote access to the Metadata Service.
The API enables clients to do several things:

1. Authenticate on behalf of a user
2. Request full or partial sets of attributes of metadata objects
3. Retrieve multiple versions of the same object
4. Resolve inter-object references
5. Update objects
6. Request upload or download of data files

The following sections describe these capabilities.

NEESgrid Data and Metadata Harvesting Protocol: an Overview

3

Authenticate on behalf of a user
At the beginning each request, the client will identify the end user to the metadata service
using a Distinguished Name. The authenticity of the DN will be assumed as part of a
trust relationship between the client and the Metadata Service, which is founded on the
requirement that end users authenticate to CHEF before any client methods can be
invoked. The protocol will be able to be extended to require the client to send Grid
credentials. The HTTPS connection used to transport protocol messages ensures that the
DN (and eventually, credentials) that the client sends will not be able to be intercepted.

The Metadata Service will enforce access control for every request based on the DN that
it receives from the client. If access is forbidden, a response to that effect will be sent
back, and that kind of access to the object will be denied to the client.

Request full or partial sets of attributes of metadata objects
The primary function of the Metadata Service is to provide access to metadata objects.
For the client, this means that metadata objects can be partially or fully retrieved and used
as if they were locally present. Since copying every object to the client is bandwidth-
costly, the client will be able to request subsets of the set of metadata objects managed by
the Metadata Service, and also will be able to request partial information about objects of
interest.

Each object is represented in the repository as a collection of attributes of various types.
Some attributes, such as the object’s unique identifier, its type, its access control and its
version information, are special system attributes that every object has. Other attributes
represent information about real-world objects and thus belong to only to objects of
certain types. For instance, an object representing a camera might have an attribute
identifying its manufacturer, whereas an object representing a person would not.

The client will be able to request some or all of the attributes for a given object. This
feature allows for lower-bandwidth requests when, for instance, a large collection of
objects is going to be summarized for the user.

Retrieve multiple versions of the same object
Every object in the repository is associated with versioning information that identifies the
sequence and timing of versions of the object. When an object is updated, the old version
of the object is retained and the new version, with its time of creation (i.e. when the
update was received by the Metadata Service), creator, and version number, is linked to
it. The client can ask for references to all versions of an object, so that it can find out
which version existed at any given time. At any time, the client can request the most
recent version of any object of interest.

Resolve inter-object references
Inter-object references allow objects to use other objects as the values of attributes. For
instance, an object representing an experiment may have an attribute describing the
principal investigator, the value of which is an object representing a person. The client

NEESgrid Data and Metadata Harvesting Protocol: an Overview

4

can follow these references because it can find out the ID of any object another object
refers to.

Versioning complicates this considerably. If an object α created at time t1 refers to an
object β that existed at time t1 but was updated at t2, the reference is ambiguous. In this
case, the reference from α to the original β (t1) is retained when β is updated, but once the
client follows the link from α to β (t1), it can retrieve any version of β that meets the
user’s needs (next, most recent, original, etc.).

Update objects
Objects are immutable. Updating an object means creating a new version of it with
modified attributes. When the client updates an object, the Metadata Service makes the
necessary changes in the database and responds with a message identifying the newly-
created object and its associated version information. Making changes takes time. A
client can change sets of objects atomically by locking the objects, as when multiple
objects that refer to each other need to be modified “at once”. This prevents other clients
from creating new versions of the objects, which helps prevent inconsistencies from
appearing in the database. When the client releases the lock, the objects will all appear to
be modified simultaneously. If the client fails to release a lock (due to failure, for
instance), the lock will expire, and the affected objects will revert to their previous
versions. When a client locks an object or set of objects, it asks for an expiration time
and the server responds with an expiration time that is no longer than that time, or with a
message that the object or any member of the set of objects are already locked.

Deleting an object in effect creates a special, final version of the object which is marked
as deleted. An object can be rolled back to an earlier version, which in effect creates a
new version which is in its attribute values identical to the earlier version. Undeletion
user environment aliases

Root object

Request upload or download of data files
The client can request to upload or download data files. Data files are represented by
objects just like everything else. However, file upload and download is handled
somewhat differently from object viewing and updating, since it requires that end users
have GridFTP access to the site local storage systems. For upload, the client creates or
updates a file object and the Metadata Service makes the necessary changes, and
additionally generates a GridFTP URL to which the client can upload the data. The client
then notifies the metadata service that it is done uploading the file. The URL is
temporary; further updates to the file will require additional upload requests.
Downloading is accomplished similarly. The client requests a file for download, and the
Metadata Service returns a URL at which it can be temporarily found. The client is then
responsible for downloading the data and notifying the server that it has been
downloaded.

NEESgrid Data and Metadata Harvesting Protocol: an Overview

5

Notification of successful upload and download will be accomplished using atomic file-
level operations by the GridFTP client. When it is done either downloading or uploading
a file, it will change the file’s name according to a simple naming convention, and the
Metadata Service will notice the name change by periodically polling the target directory.

